An interactive meta-analysis of MRI biomarkers of myelin

  1. Matteo Mancini  Is a corresponding author
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
  1. University of Sussex, United Kingdom
  2. Polytechnique Montreal, Canada
  3. University of Oxford, United Kingdom

Abstract

Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analysed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.

Data availability

All the data collected from the selected studies for this meta-analysis are provided in the spreadsheet file Source data 1

Article and author information

Author details

  1. Matteo Mancini

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    For correspondence
    ingmatteomancini@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-4568
  2. Agah Karakuzu

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Cohen-Adad

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Mara Cercignani

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas E Nichols

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikola Stikov

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8480-5230

Funding

Wellcome Trust (213722/Z/18/Z)

  • Matteo Mancini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Mancini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,133
    views
  • 567
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matteo Mancini
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
(2020)
An interactive meta-analysis of MRI biomarkers of myelin
eLife 9:e61523.
https://doi.org/10.7554/eLife.61523

Share this article

https://doi.org/10.7554/eLife.61523

Further reading

    1. Neuroscience
    Rossella Conti, Céline Auger
    Research Article

    Granule cells of the cerebellum make up to 175,000 excitatory synapses on a single Purkinje cell, encoding the wide variety of information from the mossy fibre inputs into the cerebellar cortex. The granule cell axon is made of an ascending portion and a long parallel fibre extending at right angles, an architecture suggesting that synapses formed by the two segments of the axon could encode different information. There are controversial indications that ascending axon (AA) and parallel fibre (PF) synapse properties and modalities of plasticity are different. We tested the hypothesis that AA and PF synapses encode different information, and that the association of these distinct inputs to Purkinje cells might be relevant to the circuit and trigger plasticity, similar to the coincident activation of PF and climbing fibre inputs. Here, by recording synaptic currents in Purkinje cells from either proximal or distal granule cells (mostly AA and PF synapses, respectively), we describe a new form of associative plasticity between these two distinct granule cell inputs. We show for the first time that synchronous AA and PF repetitive train stimulation, with inhibition intact, triggers long-term potentiation (LTP) at AA synapses specifically. Furthermore, the timing of the presentation of the two inputs controls the outcome of plasticity and induction requires NMDAR and mGluR1 activation. The long length of the PFs allows us to preferentially activate the two inputs independently, and despite a lack of morphological reconstruction of the connections, these observations reinforce the suggestion that AA and PF synapses have different coding capabilities and plasticity that is associative, enabling effective association of information transmitted via granule cells.

    1. Neuroscience
    Bhanu Shrestha, Jiun Sang ... Youngseok Lee
    Research Article

    Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.