An interactive meta-analysis of MRI biomarkers of myelin

  1. Matteo Mancini  Is a corresponding author
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
  1. University of Sussex, United Kingdom
  2. Polytechnique Montreal, Canada
  3. University of Oxford, United Kingdom

Abstract

Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analysed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.

Data availability

All the data collected from the selected studies for this meta-analysis are provided in the spreadsheet file Source data 1

Article and author information

Author details

  1. Matteo Mancini

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    For correspondence
    ingmatteomancini@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-4568
  2. Agah Karakuzu

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Cohen-Adad

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Mara Cercignani

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas E Nichols

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikola Stikov

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8480-5230

Funding

Wellcome Trust (213722/Z/18/Z)

  • Matteo Mancini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Saad Jbabdi, University of Oxford, United Kingdom

Version history

  1. Received: July 28, 2020
  2. Accepted: October 20, 2020
  3. Accepted Manuscript published: October 21, 2020 (version 1)
  4. Version of Record published: November 6, 2020 (version 2)

Copyright

© 2020, Mancini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,587
    views
  • 516
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matteo Mancini
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
(2020)
An interactive meta-analysis of MRI biomarkers of myelin
eLife 9:e61523.
https://doi.org/10.7554/eLife.61523

Share this article

https://doi.org/10.7554/eLife.61523

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Genetics and Genomics
    2. Neuroscience
    Kenneth Chiou, Noah Snyder-Mackler
    Insight

    Single-cell RNA sequencing reveals the extent to which marmosets carry genetically distinct cells from their siblings.