An interactive meta-analysis of MRI biomarkers of myelin

  1. Matteo Mancini  Is a corresponding author
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
  1. University of Sussex, United Kingdom
  2. Polytechnique Montreal, Canada
  3. University of Oxford, United Kingdom

Abstract

Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analysed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.

Data availability

All the data collected from the selected studies for this meta-analysis are provided in the spreadsheet file Source data 1

Article and author information

Author details

  1. Matteo Mancini

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    For correspondence
    ingmatteomancini@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-4568
  2. Agah Karakuzu

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Cohen-Adad

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Mara Cercignani

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas E Nichols

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikola Stikov

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8480-5230

Funding

Wellcome Trust (213722/Z/18/Z)

  • Matteo Mancini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Mancini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,295
    views
  • 585
    downloads
  • 125
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matteo Mancini
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
(2020)
An interactive meta-analysis of MRI biomarkers of myelin
eLife 9:e61523.
https://doi.org/10.7554/eLife.61523

Share this article

https://doi.org/10.7554/eLife.61523

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Genetics and Genomics
    2. Neuroscience
    Tanya Wolff, Mark Eddison ... Gerald M Rubin
    Research Article

    The central complex (CX) plays a key role in many higher-order functions of the insect brain including navigation and activity regulation. Genetic tools for manipulating individual cell types, and knowledge of what neurotransmitters and neuromodulators they express, will be required to gain mechanistic understanding of how these functions are implemented. We generated and characterized split-GAL4 driver lines that express in individual or small subsets of about half of CX cell types. We surveyed neuropeptide and neuropeptide receptor expression in the central brain using fluorescent in situ hybridization. About half of the neuropeptides we examined were expressed in only a few cells, while the rest were expressed in dozens to hundreds of cells. Neuropeptide receptors were expressed more broadly and at lower levels. Using our GAL4 drivers to mark individual cell types, we found that 51 of the 85 CX cell types we examined expressed at least one neuropeptide and 21 expressed multiple neuropeptides. Surprisingly, all co-expressed a small molecule neurotransmitter. Finally, we used our driver lines to identify CX cell types whose activation affects sleep, and identified other central brain cell types that link the circadian clock to the CX. The well-characterized genetic tools and information on neuropeptide and neurotransmitter expression we provide should enhance studies of the CX.