An interactive meta-analysis of MRI biomarkers of myelin

  1. Matteo Mancini  Is a corresponding author
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
  1. University of Sussex, United Kingdom
  2. Polytechnique Montreal, Canada
  3. University of Oxford, United Kingdom

Abstract

Several MRI measures have been proposed as in vivo biomarkers of myelin, each with applications ranging from plasticity to pathology. Despite the availability of these myelin-sensitive modalities, specificity and sensitivity have been a matter of discussion. Debate about which MRI measure is the most suitable for quantifying myelin is still ongoing. In this study, we performed a systematic review of published quantitative validation studies to clarify how different these measures are when compared to the underlying histology. We analysed the results from 43 studies applying meta-analysis tools, controlling for study sample size and using interactive visualization (https://neurolibre.github.io/myelin-meta-analysis). We report the overall estimates and the prediction intervals for the coefficient of determination and find that MT and relaxometry-based measures exhibit the highest correlations with myelin content. We also show which measures are, and which measures are not statistically different regarding their relationship with histology.

Data availability

All the data collected from the selected studies for this meta-analysis are provided in the spreadsheet file Source data 1

Article and author information

Author details

  1. Matteo Mancini

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    For correspondence
    ingmatteomancini@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7194-4568
  2. Agah Karakuzu

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Cohen-Adad

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Mara Cercignani

    Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas E Nichols

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Nikola Stikov

    NeuroPoly Lab, Polytechnique Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8480-5230

Funding

Wellcome Trust (213722/Z/18/Z)

  • Matteo Mancini

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Saad Jbabdi, University of Oxford, United Kingdom

Version history

  1. Received: July 28, 2020
  2. Accepted: October 20, 2020
  3. Accepted Manuscript published: October 21, 2020 (version 1)
  4. Version of Record published: November 6, 2020 (version 2)

Copyright

© 2020, Mancini et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,522
    Page views
  • 512
    Downloads
  • 78
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matteo Mancini
  2. Agah Karakuzu
  3. Julien Cohen-Adad
  4. Mara Cercignani
  5. Thomas E Nichols
  6. Nikola Stikov
(2020)
An interactive meta-analysis of MRI biomarkers of myelin
eLife 9:e61523.
https://doi.org/10.7554/eLife.61523

Share this article

https://doi.org/10.7554/eLife.61523

Further reading

    1. Neuroscience
    Silvia Maggi, Rebecca M Hock ... Mark D Humphries
    Research Article

    Investigating how, when, and what subjects learn during decision-making tasks requires tracking their choice strategies on a trial-by-trial basis. Here we present a simple but effective probabilistic approach to tracking choice strategies at trial resolution using Bayesian evidence accumulation. We show this approach identifies both successful learning and the exploratory strategies used in decision tasks performed by humans, non-human primates, rats, and synthetic agents. Both when subjects learn and when rules change the exploratory strategies of win-stay and lose-shift, often considered complementary, are consistently used independently. Indeed, we find the use of lose-shift is strong evidence that subjects have latently learnt the salient features of a new rewarded rule. Our approach can be extended to any discrete choice strategy, and its low computational cost is ideally suited for real-time analysis and closed-loop control.

    1. Computational and Systems Biology
    2. Neuroscience
    Tony Zhang, Matthew Rosenberg ... Markus Meister
    Research Article

    An animal entering a new environment typically faces three challenges: explore the space for resources, memorize their locations, and navigate towards those targets as needed. Here we propose a neural algorithm that can solve all these problems and operates reliably in diverse and complex environments. At its core, the mechanism makes use of a behavioral module common to all motile animals, namely the ability to follow an odor to its source. We show how the brain can learn to generate internal “virtual odors” that guide the animal to any location of interest. This endotaxis algorithm can be implemented with a simple 3-layer neural circuit using only biologically realistic structures and learning rules. Several neural components of this scheme are found in brains from insects to humans. Nature may have evolved a general mechanism for search and navigation on the ancient backbone of chemotaxis.