HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration

  1. Alicia Tapias
  2. David Lázaro
  3. Bo-Kun Yin
  4. Seyed Mohammad Mahdi Rasa
  5. Anna Krepelova
  6. Erika Kelmer Sacramento
  7. Paulius Grigaravicius
  8. Philipp Koch
  9. Joanna Kirkpatrick
  10. Alessandro Ori
  11. Francesco Neri
  12. Zhao-Qi Wang  Is a corresponding author
  1. Leibniz Institute on Ageing - Fritz Lipmann Institute, Germany
  2. Leibniz Institute on Aging - Fritz Lipmann Institute, Germany

Abstract

Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (Transformation/translation domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT and SP1 with microtubule dynamics, in neuroprotection.

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus [80] and are accessible through the GEO Series accession numbers GSE131213 (RNA-seq aNSCs), GSE131283 (RNA-seq brain tissues) and GSE131028 (ChIP-seq aNSCs). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) [81] via the PRIDE partner repository [82], with the dataset identifier PXD013730.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alicia Tapias

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Lázaro

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo-Kun Yin

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Seyed Mohammad Mahdi Rasa

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6850-8909
  5. Anna Krepelova

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Erika Kelmer Sacramento

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Paulius Grigaravicius

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Philipp Koch

    Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2825-7943
  9. Joanna Kirkpatrick

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Alessandro Ori

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3046-0871
  11. Francesco Neri

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhao-Qi Wang

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    For correspondence
    Zhao-Qi.Wang@leibniz-fli.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8336-3485

Funding

Leibniz Publik

  • Zhao-Qi Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted according to German animal welfare legislation, and the protocol is approved by Thüringen Landesamt für Verbraucherschutz (TLV) (03-042/16), Germany.

Reviewing Editor

  1. Jeremy J Day, University of Alabama at Birmingham, United States

Publication history

  1. Received: July 28, 2020
  2. Accepted: February 16, 2021
  3. Accepted Manuscript published: February 17, 2021 (version 1)
  4. Version of Record published: March 8, 2021 (version 2)
  5. Version of Record updated: May 18, 2021 (version 3)
  6. Version of Record updated: July 19, 2021 (version 4)

Copyright

© 2021, Tapias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,058
    Page views
  • 166
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alicia Tapias
  2. David Lázaro
  3. Bo-Kun Yin
  4. Seyed Mohammad Mahdi Rasa
  5. Anna Krepelova
  6. Erika Kelmer Sacramento
  7. Paulius Grigaravicius
  8. Philipp Koch
  9. Joanna Kirkpatrick
  10. Alessandro Ori
  11. Francesco Neri
  12. Zhao-Qi Wang
(2021)
HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration
eLife 10:e61531.
https://doi.org/10.7554/eLife.61531

Further reading

    1. Chromosomes and Gene Expression
    Qiming Yang, Te-Wen Lo ... Barbara J Meyer
    Research Article

    An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species C. briggsae (Cbr) and C. elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13-bp MEX and 30-bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.

    1. Chromosomes and Gene Expression
    2. Plant Biology
    Vy Nguyen, Iain Searle
    Insight

    A well-established model for how plants start the process of flowering in periods of cold weather may need revisiting.