HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration

  1. Alicia Tapias
  2. David Lázaro
  3. Bo-Kun Yin
  4. Seyed Mohammad Mahdi Rasa
  5. Anna Krepelova
  6. Erika Kelmer Sacramento
  7. Paulius Grigaravicius
  8. Philipp Koch
  9. Joanna Kirkpatrick
  10. Alessandro Ori
  11. Francesco Neri
  12. Zhao-Qi Wang  Is a corresponding author
  1. Leibniz Institute on Ageing - Fritz Lipmann Institute, Germany
  2. Leibniz Institute on Aging - Fritz Lipmann Institute, Germany

Abstract

Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (Transformation/translation domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT and SP1 with microtubule dynamics, in neuroprotection.

Data availability

The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus [80] and are accessible through the GEO Series accession numbers GSE131213 (RNA-seq aNSCs), GSE131283 (RNA-seq brain tissues) and GSE131028 (ChIP-seq aNSCs). The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) [81] via the PRIDE partner repository [82], with the dataset identifier PXD013730.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Alicia Tapias

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. David Lázaro

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo-Kun Yin

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Seyed Mohammad Mahdi Rasa

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6850-8909
  5. Anna Krepelova

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Erika Kelmer Sacramento

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Paulius Grigaravicius

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Philipp Koch

    Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2825-7943
  9. Joanna Kirkpatrick

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Alessandro Ori

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3046-0871
  11. Francesco Neri

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhao-Qi Wang

    Leibniz Institute on Ageing - Fritz Lipmann Institute, Jena, Germany
    For correspondence
    Zhao-Qi.Wang@leibniz-fli.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8336-3485

Funding

Leibniz Publik

  • Zhao-Qi Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were conducted according to German animal welfare legislation, and the protocol is approved by Thüringen Landesamt für Verbraucherschutz (TLV) (03-042/16), Germany.

Reviewing Editor

  1. Jeremy J Day, University of Alabama at Birmingham, United States

Version history

  1. Received: July 28, 2020
  2. Accepted: February 16, 2021
  3. Accepted Manuscript published: February 17, 2021 (version 1)
  4. Version of Record published: March 8, 2021 (version 2)
  5. Version of Record updated: May 18, 2021 (version 3)
  6. Version of Record updated: July 19, 2021 (version 4)

Copyright

© 2021, Tapias et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,194
    Page views
  • 187
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alicia Tapias
  2. David Lázaro
  3. Bo-Kun Yin
  4. Seyed Mohammad Mahdi Rasa
  5. Anna Krepelova
  6. Erika Kelmer Sacramento
  7. Paulius Grigaravicius
  8. Philipp Koch
  9. Joanna Kirkpatrick
  10. Alessandro Ori
  11. Francesco Neri
  12. Zhao-Qi Wang
(2021)
HAT cofactor TRRAP modulates microtubule dynamics via SP1 signaling to prevent neurodegeneration
eLife 10:e61531.
https://doi.org/10.7554/eLife.61531

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    James T Anderson, Steven Henikoff, Kami Ahmad
    Research Article

    Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Virginia L Pimmett, Mounia Lagha
    Insight

    Imaging experiments reveal the complex and dynamic nature of the transcriptional hubs associated with Notch signaling.