Early life imprints the hierarchy of T cell clone sizes

  1. Mario U Gaimann
  2. Maximilian Nguyen
  3. Jonathan Desponds
  4. Andreas Mayer  Is a corresponding author
  1. Ludwig Maximilian University of Munich, Germany
  2. Princeton University, United States
  3. Northwestern University, United States

Abstract

The adaptive immune system responds to pathogens by selecting clones of cells with specific receptors. While clonal selection in response to particular antigens has been studied in detail, it is unknown how a lifetime of exposures to many antigens collectively shape the immune repertoire. Here, using mathematical modeling and statistical analyses of T cell receptor sequencing data we develop a quantitative theory of human T cell dynamics compatible with the statistical laws of repertoire organization. We find that clonal expansions during a perinatal time window leave a long-lasting imprint on the human T cell repertoire, which is only slowly reshaped by fluctuating clonal selection during adult life. Our work provides a mechanism for how early clonal dynamics imprint the hierarchy of T cell clone sizes with implications for pathogen defense and autoimmunity.

Data availability

No new data was generated in this study.

The following previously published data sets were used

Article and author information

Author details

  1. Mario U Gaimann

    Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig Maximilian University of Munich, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2789-090X
  2. Maximilian Nguyen

    Lewis-Sigler Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jonathan Desponds

    Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7112-3217
  4. Andreas Mayer

    Lewis-Sigler Institute, Princeton University, Princeton, United States
    For correspondence
    andimscience@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6643-7622

Funding

Lewis-Sigler Institute (Lewis-Sigler fellowship)

  • Andreas Mayer

Deutscher Akademischer Austauschdienst (RISE fellowship)

  • Mario U Gaimann

Simons Foundation (SFARI/597491-RWC)

  • Jonathan Desponds

National Science Foundation (17764421)

  • Jonathan Desponds

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Armita Nourmohammad, University of Washington, United States

Version history

  1. Received: July 31, 2020
  2. Accepted: December 20, 2020
  3. Accepted Manuscript published: December 21, 2020 (version 1)
  4. Accepted Manuscript updated: January 5, 2021 (version 2)
  5. Version of Record published: February 8, 2021 (version 3)
  6. Version of Record updated: February 9, 2021 (version 4)

Copyright

© 2020, Gaimann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,958
    Page views
  • 301
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mario U Gaimann
  2. Maximilian Nguyen
  3. Jonathan Desponds
  4. Andreas Mayer
(2020)
Early life imprints the hierarchy of T cell clone sizes
eLife 9:e61639.
https://doi.org/10.7554/eLife.61639

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Xarxa Quiroga, Nikhil Walani ... Pere Roca-Cusachs
    Research Article

    As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nano-scale topography. Here we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nano-scale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.

    1. Cell Biology
    2. Physics of Living Systems
    Artur Ruppel, Dennis Wörthmüller ... Martial Balland
    Research Article Updated

    Cell-generated forces play a major role in coordinating the large-scale behavior of cell assemblies, in particular during development, wound healing, and cancer. Mechanical signals propagate faster than biochemical signals, but can have similar effects, especially in epithelial tissues with strong cell–cell adhesion. However, a quantitative description of the transmission chain from force generation in a sender cell, force propagation across cell–cell boundaries, and the concomitant response of receiver cells is missing. For a quantitative analysis of this important situation, here we propose a minimal model system of two epithelial cells on an H-pattern (‘cell doublet’). After optogenetically activating RhoA, a major regulator of cell contractility, in the sender cell, we measure the mechanical response of the receiver cell by traction force and monolayer stress microscopies. In general, we find that the receiver cells show an active response so that the cell doublet forms a coherent unit. However, force propagation and response of the receiver cell also strongly depend on the mechano-structural polarization in the cell assembly, which is controlled by cell–matrix adhesion to the adhesive micropattern. We find that the response of the receiver cell is stronger when the mechano-structural polarization axis is oriented perpendicular to the direction of force propagation, reminiscent of the Poisson effect in passive materials. We finally show that the same effects are at work in small tissues. Our work demonstrates that cellular organization and active mechanical response of a tissue are key to maintain signal strength and lead to the emergence of elasticity, which means that signals are not dissipated like in a viscous system, but can propagate over large distances.