Pregnancy success in mice requires appropriate cannabinoid receptor signaling for primary decidua formation

  1. Yingju Li
  2. Amanda Dewar
  3. Yeon Sun Kim
  4. Sudhansu K Dey  Is a corresponding author
  5. Xiaofei Sun  Is a corresponding author
  1. Cincinnati Children's Research Foundation, United States

Abstract

With implantation mouse stromal cells begin to transform into epithelial-like cells surrounding the implantation chamber forming an avascular zone called the primary decidual zone (PDZ). In mouse, the PDZ forms a transient, size-dependent permeable barrier to protect the embryo from maternal circulating harmful agents. The process of decidualization is critical for early pregnancy maintenance in mice and humans. Mice deficient in cannabinoid receptors, CB1 and CB2, show compromised PDZ with dysregulated angiogenic factors, resulting in the retention of blood vessels and macrophages. This phenotype is replicated in Cnr1-/-, but not in Cnr2-/- mice. In vitro decidualization models suggest that Cnr1 levels substantially increase in mouse and human decidualizing stromal cells, and that neutralization of CB1 signaling suppresses decidualization and misregulates angiogenic factors. In sum, we propose that implantation quality depends on appropriate angiogenic events driven by the integration of CB2 in endothelial cells and CB1 in decidual cells.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yingju Li

    Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Amanda Dewar

    Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yeon Sun Kim

    Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sudhansu K Dey

    Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, United States
    For correspondence
    sk.dey@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9159-186X
  5. Xiaofei Sun

    Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, United States
    For correspondence
    xiaofei.sun@cchmc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9601-5423

Funding

National Institute on Drug Abuse (DA006668)

  • Sudhansu K Dey

Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD068524)

  • Sudhansu K Dey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Susan Fisher, UCSF, United States

Version history

  1. Received: August 4, 2020
  2. Accepted: September 29, 2020
  3. Accepted Manuscript published: September 29, 2020 (version 1)
  4. Version of Record published: October 12, 2020 (version 2)

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,505
    views
  • 222
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yingju Li
  2. Amanda Dewar
  3. Yeon Sun Kim
  4. Sudhansu K Dey
  5. Xiaofei Sun
(2020)
Pregnancy success in mice requires appropriate cannabinoid receptor signaling for primary decidua formation
eLife 9:e61762.
https://doi.org/10.7554/eLife.61762

Share this article

https://doi.org/10.7554/eLife.61762

Further reading

    1. Developmental Biology
    Siyuan Cheng, Ivan Fan Xia ... Stefania Nicoli
    Research Article

    Vascular smooth muscle cells (VSMCs) envelop vertebrate brain arteries and play a crucial role in regulating cerebral blood flow and neurovascular coupling. The dedifferentiation of VSMCs is implicated in cerebrovascular disease and neurodegeneration. Despite its importance, the process of VSMC differentiation on brain arteries during development remains inadequately characterized. Understanding this process could aid in reprogramming and regenerating dedifferentiated VSMCs in cerebrovascular diseases. In this study, we investigated VSMC differentiation on zebrafish circle of Willis (CoW), comprising major arteries that supply blood to the vertebrate brain. We observed that arterial specification of CoW endothelial cells (ECs) occurs after their migration from cranial venous plexus to form CoW arteries. Subsequently, acta2+ VSMCs differentiate from pdgfrb+ mural cell progenitors after they were recruited to CoW arteries. The progression of VSMC differentiation exhibits a spatiotemporal pattern, advancing from anterior to posterior CoW arteries. Analysis of blood flow suggests that earlier VSMC differentiation in anterior CoW arteries correlates with higher red blood cell velocity and wall shear stress. Furthermore, pulsatile flow induces differentiation of human brain PDGFRB+ mural cells into VSMCs, and blood flow is required for VSMC differentiation on zebrafish CoW arteries. Consistently, flow-responsive transcription factor klf2a is activated in ECs of CoW arteries prior to VSMC differentiation, and klf2a knockdown delays VSMC differentiation on anterior CoW arteries. In summary, our findings highlight blood flow activation of endothelial klf2a as a mechanism regulating initial VSMC differentiation on vertebrate brain arteries.

    1. Developmental Biology
    Zhimin Xu, Zhao Wang ... Yingchuan B Qi
    Research Article

    Precise developmental timing control is essential for organism formation and function, but its mechanisms are unclear. In C. elegans, the microRNA lin-4 critically regulates developmental timing by post-transcriptionally downregulating the larval-stage-fate controller LIN-14. However, the mechanisms triggering the activation of lin-4 expression toward the end of the first larval stage remain unknown. We demonstrate that the transmembrane transcription factor MYRF-1 is necessary for lin-4 activation. MYRF-1 is initially localized on the cell membrane, and its increased cleavage and nuclear accumulation coincide with lin-4 expression timing. MYRF-1 regulates lin-4 expression cell-autonomously and hyperactive MYRF-1 can prematurely drive lin-4 expression in embryos and young first-stage larvae. The tandem lin-4 promoter DNA recruits MYRF-1GFP to form visible loci in the nucleus, suggesting that MYRF-1 directly binds to the lin-4 promoter. Our findings identify a crucial link in understanding developmental timing regulation and establish MYRF-1 as a key regulator of lin-4 expression.