Dynamics of diffusive cell signaling relays
Abstract
In biological contexts as diverse as development, apoptosis, and synthetic microbial consortia, collections of cells or sub-cellular components have been shown to overcome the slow signaling speed of simple diffusion by utilizing diffusive relays, in which the presence of one type of diffusible signaling molecule triggers participation in the emission of the same type of molecule. This collective effect gives rise to fast-traveling diffusive waves. Here, in the context of cell signaling, we show that system dimensionality – the shape of the extracellular medium and the distribution of cells within it – can dramatically affect the wave dynamics, but that these dynamics are insensitive to details of cellular activation. As an example, we show that neutrophil swarming experiments exhibit dynamical signatures consistent with the proposed signaling motif. We further show that cell signaling relays generate much steeper concentration profiles than does simple diffusion, which may facilitate neutrophil chemotaxis.
Data availability
The only dataset we analyze or generate is present and available in Reategui (2017). PMID: 29057147. Code for the figures is available at github.io/pdieterle/diffWavePropAndInit.
Article and author information
Author details
Funding
National Science Foundation (MRSEC DMR 14-20570)
- Ariel Amir
Kavli Foundation (N/A)
- Ariel Amir
National Science Foundation (CAREER 1752024)
- Ariel Amir
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Raymond E Goldstein, University of Cambridge, United Kingdom
Publication history
- Received: August 4, 2020
- Accepted: December 3, 2020
- Accepted Manuscript published: December 4, 2020 (version 1)
- Version of Record published: January 4, 2021 (version 2)
Copyright
© 2020, Dieterle et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,301
- Page views
-
- 317
- Downloads
-
- 8
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Physics of Living Systems
Schooling in fish is linked to a number of factors such as increased foraging success, predator avoidance, and social interactions. In addition, a prevailing hypothesis is that swimming in groups provides energetic benefits through hydrodynamic interactions. Thrust wakes are frequently occurring flow structures in fish schools as they are shed behind swimming fish. Despite increased flow speeds in these wakes, recent modeling work has suggested that swimming directly in-line behind an individual may lead to increased efficiency. However, only limited data are available on live fish interacting with thrust wakes. Here we designed a controlled experiment in which brook trout, Salvelinus fontinalis, interact with thrust wakes generated by a robotic mechanism that produces a fish-like wake. We show that trout swim in thrust wakes, reduce their tail-beat frequencies, and synchronize with the robotic flapping mechanism. Our flow and pressure field analysis revealed that the trout are interacting with oncoming vortices and that they exhibit reduced pressure drag at the head compared to swimming in isolation. Together, these experiments suggest that trout swim energetically more efficiently in thrust wakes and support the hypothesis that swimming in the wake of one another is an advantageous strategy to save energy in a school.
-
- Physics of Living Systems
When a fish beats its tail, it produces vortices in the water that other fish could take advantage of to save energy while swimming.