Dynamics of diffusive cell signaling relays
Abstract
In biological contexts as diverse as development, apoptosis, and synthetic microbial consortia, collections of cells or sub-cellular components have been shown to overcome the slow signaling speed of simple diffusion by utilizing diffusive relays, in which the presence of one type of diffusible signaling molecule triggers participation in the emission of the same type of molecule. This collective effect gives rise to fast-traveling diffusive waves. Here, in the context of cell signaling, we show that system dimensionality – the shape of the extracellular medium and the distribution of cells within it – can dramatically affect the wave dynamics, but that these dynamics are insensitive to details of cellular activation. As an example, we show that neutrophil swarming experiments exhibit dynamical signatures consistent with the proposed signaling motif. We further show that cell signaling relays generate much steeper concentration profiles than does simple diffusion, which may facilitate neutrophil chemotaxis.
Data availability
The only dataset we analyze or generate is present and available in Reategui (2017). PMID: 29057147. Code for the figures is available at github.io/pdieterle/diffWavePropAndInit.
Article and author information
Author details
Funding
National Science Foundation (MRSEC DMR 14-20570)
- Ariel Amir
Kavli Foundation (N/A)
- Ariel Amir
National Science Foundation (CAREER 1752024)
- Ariel Amir
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Dieterle et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,177
- views
-
- 435
- downloads
-
- 24
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 24
- citations for umbrella DOI https://doi.org/10.7554/eLife.61771