The human Origin Recognition Complex is essential for pre-RC assembly, mitosis and maintenance of nuclear structure

Abstract

The Origin Recognition Complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2 deficient cells were also large, with decompacted heterochromatin. Some ORC2 deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.

Data availability

The data has been deposited to the Dryad database.

The following data sets were generated

Article and author information

Author details

  1. Hsiang-Chen Chou

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  2. Kuhulika Bhalla

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  3. Osama El Demerdesh

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  4. Olaf Klingbeil

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  5. Kaarina Hanington

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Sergey Aganezov

    Department of Computer Science, John Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Peter Andrews

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  8. Habeeb Alsudani

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  9. Kenneth Chang

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  10. Christopher R Vakoc

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1158-7180
  11. Michael C Schatz

    Department of Computer Science, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. W Richard McCombie

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  13. Bruce Stillman

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    For correspondence
    stillman@cshl.edu
    Competing interests
    Bruce Stillman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9453-4091

Funding

National Cancer Institute (P01-CA13106)

  • Bruce Stillman

National Cancer Institute (P50-CA045508)

  • Bruce Stillman

National Science Foundation (DBI-1627442)

  • Michael C Schatz

National Cancer Institute (P01-CA13106)

  • Christopher R Vakoc

National Cancer Institute (P01-CA13106)

  • W Richard McCombie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Chou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,988
    views
  • 406
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hsiang-Chen Chou
  2. Kuhulika Bhalla
  3. Osama El Demerdesh
  4. Olaf Klingbeil
  5. Kaarina Hanington
  6. Sergey Aganezov
  7. Peter Andrews
  8. Habeeb Alsudani
  9. Kenneth Chang
  10. Christopher R Vakoc
  11. Michael C Schatz
  12. W Richard McCombie
  13. Bruce Stillman
(2021)
The human Origin Recognition Complex is essential for pre-RC assembly, mitosis and maintenance of nuclear structure
eLife 10:e61797.
https://doi.org/10.7554/eLife.61797

Share this article

https://doi.org/10.7554/eLife.61797

Further reading

    1. Chromosomes and Gene Expression
    Chileleko Siachisumo, Sara Luzzi ... David J Elliott
    Research Advance

    Previously, we showed that the germ cell-specific nuclear protein RBMXL2 represses cryptic splicing patterns during meiosis and is required for male fertility (Ehrmann et al., 2019). Here, we show that in somatic cells the similar yet ubiquitously expressed RBMX protein has similar functions. RBMX regulates a distinct class of exons that exceed the median human exon size. RBMX protein-RNA interactions are enriched within ultra-long exons, particularly within genes involved in genome stability, and repress the selection of cryptic splice sites that would compromise gene function. The RBMX gene is silenced during male meiosis due to sex chromosome inactivation. To test whether RBMXL2 might replace the function of RBMX during meiosis we induced expression of RBMXL2 and the more distantly related RBMY protein in somatic cells, finding each could rescue aberrant patterns of RNA processing caused by RBMX depletion. The C-terminal disordered domain of RBMXL2 is sufficient to rescue proper splicing control after RBMX depletion. Our data indicate that RBMX and RBMXL2 have parallel roles in somatic tissues and the germline that must have been conserved for at least 200 million years of mammalian evolution. We propose RBMX family proteins are particularly important for the splicing inclusion of some ultra-long exons with increased intrinsic susceptibility to cryptic splice site selection.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata's survival in macrophages and drug tolerance.