A framework for studying behavioral evolution by reconstructing ancestral repertoires

  1. Damián G Hernández
  2. Catalina Rivera
  3. Jessica Cande
  4. Baohua Zhou
  5. David Stern
  6. Gordon J Berman  Is a corresponding author
  1. Centro Atómico Bariloche and Instituto Balseiro, Argentina
  2. Emory University, United States
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.

Data availability

All behavioral region information is submitted with the article and will be posted publically, if accepted, on GitHub (https://github.com/bermanlabemory/behavioral-evolution). The original video data are too large to post (tens of TB), but will be made available upon request.

Article and author information

Author details

  1. Damián G Hernández

    Department of Medical Physics, Centro Atómico Bariloche and Instituto Balseiro, Bariloche, Argentina
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8995-7495
  2. Catalina Rivera

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  3. Jessica Cande

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Baohua Zhou

    Department of Physics, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  5. David Stern

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1847-6483
  6. Gordon J Berman

    Department of Biology, Emory University, Atlanta, United States
    For correspondence
    gordon.berman@emory.edu
    Competing interests
    Gordon J Berman, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3588-7820

Funding

National Institute of Mental Health (MH115831-01)

  • Gordon J Berman

Human Frontiers Science Program (RGY0076/2018)

  • Gordon J Berman

Howard Hughes Medical Institute

  • Jessica Cande
  • David Stern
  • Gordon J Berman

Research Corporation for Science Advancement (25999)

  • Gordon J Berman

National Science Foundation (1806833)

  • Catalina Rivera

Ministerio de Ciencia y Tecnología, Gobierno de la Provincia de Córdoba

  • Damián G Hernández

The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Hernández et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,680
    views
  • 436
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Damián G Hernández
  2. Catalina Rivera
  3. Jessica Cande
  4. Baohua Zhou
  5. David Stern
  6. Gordon J Berman
(2021)
A framework for studying behavioral evolution by reconstructing ancestral repertoires
eLife 10:e61806.
https://doi.org/10.7554/eLife.61806

Share this article

https://doi.org/10.7554/eLife.61806

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Michael James Chambers, Sophia B Scobell, Meru J Sadhu
    Research Article

    Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued.  However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.

    1. Ecology
    2. Evolutionary Biology
    Zhixian Zhang, Jianying Li ... Songdou Zhang
    Research Article

    Seasonal polyphenism enables organisms to adapt to environmental challenges by increasing phenotypic diversity. Cacopsylla chinensis exhibits remarkable seasonal polyphenism, specifically in the form of summer-form and winter-form, which have distinct morphological phenotypes. Previous research has shown that low temperature and the temperature receptor CcTRPM regulate the transition from summer-form to winter-form in C. chinensis by impacting cuticle content and thickness. However, the underling neuroendocrine regulatory mechanism remains largely unknown. Bursicon, also known as the tanning hormone, is responsible for the hardening and darkening of the insect cuticle. In this study, we report for the first time on the novel function of Bursicon and its receptor in the transition from summer-form to winter-form in C. chinensis. Firstly, we identified CcBurs-α and CcBurs-β as two typical subunits of Bursicon in C. chinensis, which were regulated by low temperature (10 °C) and CcTRPM. Subsequently, CcBurs-α and CcBurs-β formed a heterodimer that mediated the transition from summer-form to winter-form by influencing the cuticle chitin contents and cuticle thickness. Furthermore, we demonstrated that CcBurs-R acts as the Bursicon receptor and plays a critical role in the up-stream signaling of the chitin biosynthesis pathway, regulating the transition from summer-form to winter-form. Finally, we discovered that miR-6012 directly targets CcBurs-R, contributing to the regulation of Bursicon signaling in the seasonal polyphenism of C. chinensis. In summary, these findings reveal the novel function of the neuroendocrine regulatory mechanism underlying seasonal polyphenism and provide critical insights into the insect Bursicon and its receptor.