Anatomy and activity patterns in a multifunctional motor neuron and its surrounding circuits

  1. Mária Ashaber
  2. Yusuke Tomina
  3. Pegah Kassraian
  4. Eric A Bushong
  5. William B Kristan Jnr
  6. Mark H Ellisman
  7. Daniel A Wagenaar  Is a corresponding author
  1. California Institute of Technology, United States
  2. Keio University, Japan
  3. University of California, San Diego, United States

Abstract

Dorsal Excitor motor neuron DE-3 in the medicinal leech plays three very different dynamical roles in three different behaviors. Without rewiring its anatomical connectivity, how can a motor neuron dynamically switch roles to play appropriate roles in various behaviors? We previously used voltage-sensitive dye imaging to record from DE-3 and most other neurons in the leech segmental ganglion during (fictive) swimming, crawling, and local-bend escape (Tomina and Wagenaar, 2017). Here, we repeated that experiment, then re-imaged the same ganglion using serial blockface electron microscopy and traced DE-3's processes. Further, we traced back the processes of DE-3's presynaptic partners to their respective somata. This allowed us to analyze the relationship between circuit anatomy and the activity patterns it sustains. We found that input synapses important for all of the behaviors were widely distributed over DE-3's branches, yet that functional clusters were different during (fictive) swimming vs. crawling.

Data availability

The easiest way to access the raw electrophysiology and voltage-dye data as well as the tracing results used in this paper is through a series of Python modules that we made available at https://github.com/wagenadl/leechem-public. Included in the package is a file called "demo.py" that demonstrates the use of the modules. Table 4 lists the available VSD trials.The aligned EM volume may be accessed through the Neuroglancer instance at https://leechem.caltech.edu or by pointing SBEMViewer to https://leechem.caltech.edu/emdata.The code used for alignment is available at https://github.com/wagenadl/sbemalign. Our visualization tools SBEMViewer and GVox are at https://github.com/wagenadl/sbemviewer and https://github.com/wagenadl/gvox.

The following data sets were generated

Article and author information

Author details

  1. Mária Ashaber

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5586-9585
  2. Yusuke Tomina

    Faculty of Science and Technology, Keio University, Yokohama, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Pegah Kassraian

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric A Bushong

    Center for Research in Biological Systems, National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6195-2433
  5. William B Kristan Jnr

    Division of Biological Sciences,, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark H Ellisman

    National Center for Microscopy and Imaging Research,, University of California, San Diego, Le Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel A Wagenaar

    Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
    For correspondence
    daw@caltech.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6222-761X

Funding

National Institute of Neurological Disorders and Stroke (R01-NS094403)

  • William B Kristan Jnr
  • Mark H Ellisman
  • Daniel A Wagenaar

National Institute of General Medical Sciences (P41-GM103412)

  • Mark H Ellisman

Japan Society for the Promotion of Science (201800526)

  • Yusuke Tomina

Japan Society for the Promotion of Science (19K16191)

  • Yusuke Tomina

Swiss National Science Foundation (P2EZP3-181896)

  • Pegah Kassraian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Vatsala Thirumalai, National Centre for Biological Sciences, India

Version history

  1. Received: August 7, 2020
  2. Accepted: February 12, 2021
  3. Accepted Manuscript published: February 15, 2021 (version 1)
  4. Version of Record published: March 12, 2021 (version 2)
  5. Version of Record updated: March 22, 2021 (version 3)

Copyright

© 2021, Ashaber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,471
    views
  • 290
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mária Ashaber
  2. Yusuke Tomina
  3. Pegah Kassraian
  4. Eric A Bushong
  5. William B Kristan Jnr
  6. Mark H Ellisman
  7. Daniel A Wagenaar
(2021)
Anatomy and activity patterns in a multifunctional motor neuron and its surrounding circuits
eLife 10:e61881.
https://doi.org/10.7554/eLife.61881

Share this article

https://doi.org/10.7554/eLife.61881

Further reading

    1. Neuroscience
    Sandra P Cárdenas-García, Sundas Ijaz, Alberto E Pereda
    Research Article

    Most nervous systems combine both transmitter-mediated and direct cell-cell communication, known as 'chemical' and 'electrical' synapses, respectively. Chemical synapses can be identified by their multiple structural components. Electrical synapses are, on the other hand, generally defined by the presence of a 'gap junction' (a cluster of intercellular channels) between two neuronal processes. However, while gap junctions provide the communicating mechanism, it is unknown whether electrical transmission requires the contribution of additional cellular structures. We investigated this question at identifiable single synaptic contacts on the zebrafish Mauthner cells, at which gap junctions coexist with specializations for neurotransmitter release and where the contact unequivocally defines the anatomical limits of a synapse. Expansion microscopy of these single contacts revealed a detailed map of the incidence and spatial distribution of proteins pertaining to various synaptic structures. Multiple gap junctions of variable size were identified by the presence of their molecular components. Remarkably, most of the synaptic contact's surface was occupied by interleaving gap junctions and components of adherens junctions, suggesting a close functional association between these two structures. In contrast, glutamate receptors were confined to small peripheral portions of the contact, indicating that most of the synaptic area functions as an electrical synapse. Thus, our results revealed the overarching organization of an electrical synapse that operates with not one, but multiple gap junctions, in close association with structural and signaling molecules known to be components of adherens junctions. The relationship between these intercellular structures will aid in establishing the boundaries of electrical synapses found throughout animal connectomes and provide insight into the structural organization and functional diversity of electrical synapses.

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.