Abstract

Non-homologous end joining (NHEJ) is the predominant pathway that repairs DNA double strand breaks in vertebrates. During NHEJ DNA ends are held together by a multi-protein synaptic complex until they are ligated. Here we use Xenopus laevis egg extract to investigate the role of the intrinsically disordered C-terminal tail of XLF, a critical factor in end synapsis. We demonstrate that the XLF tail along with the Ku binding motif (KBM) at the extreme C-terminus are required for end joining. While the underlying sequence of the tail can be varied, a minimal tail length is required for NHEJ. Single-molecule FRET experiments that observe end synapsis in real-time show that this defect is due to a failure to closely align DNA ends. Our data supports a model in which a single C-terminal tail tethers XLF to Ku while allowing XLF to form interactions with XRCC4 that enable synaptic complex formation.

Data availability

Source data files for all summary graphs have been provided. The MATLAB scripts used to analyze and generate the results shown in Figure 3 and Supplementary Figure 5 are also included.

Article and author information

Author details

  1. Sean M Carney

    Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2674-1064
  2. Andrew T Moreno

    Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sadie C Piatt

    Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Metztli Cisneros-Aguirre

    Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Felicia Wednesday Lopezcolorado

    Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2916-6042
  6. Jeremy M Stark

    Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Joseph J Loparo

    Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    For correspondence
    joseph_loparo@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4941-4696

Funding

National Institutes of Health (R01GM115487)

  • Joseph J Loparo

National Institutes of Health (R01CA197506)

  • Jeremy M Stark

National Institutes of Health (R01CA240392)

  • Jeremy M Stark

National Institutes of Health (F32GM129913)

  • Sean M Carney

National Institutes of Health (T32 GM008313)

  • Sadie C Piatt

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The Institutional Animal Care and Use Committee (IACUC) of Harvard Medical School approved of all work performed in this study (Protocol# IS00000051-6), which was done in accordance with AAALAC rules and regulations.

Copyright

© 2020, Carney et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,652
    views
  • 235
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sean M Carney
  2. Andrew T Moreno
  3. Sadie C Piatt
  4. Metztli Cisneros-Aguirre
  5. Felicia Wednesday Lopezcolorado
  6. Jeremy M Stark
  7. Joseph J Loparo
(2020)
XLF acts as a flexible connector during non-homologous end joining
eLife 9:e61920.
https://doi.org/10.7554/eLife.61920

Share this article

https://doi.org/10.7554/eLife.61920

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.