Sustained TNF-α stimulation induces transcriptional memory that greatly enhances signal sensitivity and robustness

  1. Zuodong Zhao
  2. Zhuqiang Zhang
  3. Jingjing Li
  4. Qiang Dong
  5. Jun Xiong
  6. Yingfeng Li
  7. Mengying Lan
  8. Gang Li
  9. Bing Zhu  Is a corresponding author
  1. Chinese Academy of Sciences, China
  2. University of Macau, China

Abstract

Transcriptional memory allows certain genes to respond to previously experienced signals more robustly. However, whether and how the key proinflammatory cytokine TNF-α mediates transcriptional memory are poorly understood. Using HEK293F cells as a model system, we report that sustained TNF-α stimulation induces transcriptional memory dependent on TET enzymes. The hypomethylated status of transcriptional regulatory regions can be inherited, facilitating NF-κB binding and more robust subsequent activation. A high initial methylation level and CpG density around κB sites are correlated with the functional potential of transcriptional memory modules. Interestingly, the CALCB gene, encoding the proven migraine therapeutic target CGRP, exhibits the best transcriptional memory. A neighboring primate-specific endogenous retrovirus stimulates more rapid, more strong and at least 100-fold more sensitive CALCB induction in subsequent TNF-α stimulation. Our study reveals that TNF-α-mediated transcriptional memory is governed by active DNA demethylation and greatly sensitizes memory genes to much lower doses of inflammatory cues.

Data availability

All high-throughput data generated in this study have been deposited in NCBI GEO database under accession number GSE152146, except that p65 ChIP-seq data for 0 h and 12 h TNF-α treatments have been deposited under the accession number GSE121361 (Zhao et al., 2019).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Zuodong Zhao

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhuqiang Zhang

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6513-2854
  3. Jingjing Li

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Qiang Dong

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Jun Xiong

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yingfeng Li

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Mengying Lan

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Gang Li

    Faculty of Health Sciences, University of Macau, Taipa, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3203-8567
  9. Bing Zhu

    Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
    For correspondence
    zhubing@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2049-432X

Funding

the Chinese ministry of Science and technology (2018YFE0203300)

  • Bing Zhu

the national natural science foundation of China (31530047)

  • Bing Zhu

the national natural science foundation of China (31761163001)

  • Bing Zhu

Chinese Academy of Sciences (XDB 39000000)

  • Bing Zhu

Chinese Academy of Sciences (QYZDY-SSW-SMC031)

  • Bing Zhu

Youth Innovation Promotion Association of the Chinese Academy of Sciences (2017133)

  • Zhuqiang Zhang

Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020097)

  • Jun Xiong

the NSFC-FDCT joint grant (31761163001)

  • Bing Zhu

the NSFC-FDCT joint grant (033/2017/AFJ)

  • Gang Li

This work was supported by the Chinese Ministry of Science and Technology (2018YFE0203300), the NSFC-FDCT joint grant (31761163001 for B.Z and 033/2017/AFJ for G.L.), the National Natural Science Foundation of China (31530047, 31761163001), and the Chinese Academy of Sciences (XDB 39000000 and QYZDY-SSW-SMC031). Z. Zhang and J.X. are supported by the Youth Innovation Promotion Association (2017133 and 2020097, respectively) of the Chinese Academy of Sciences.

Reviewing Editor

  1. Xiaobing Shi, Van Andel Institute, United States

Version history

  1. Received: August 10, 2020
  2. Accepted: November 5, 2020
  3. Accepted Manuscript published: November 6, 2020 (version 1)
  4. Version of Record published: November 30, 2020 (version 2)

Copyright

© 2020, Zhao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,738
    Page views
  • 779
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zuodong Zhao
  2. Zhuqiang Zhang
  3. Jingjing Li
  4. Qiang Dong
  5. Jun Xiong
  6. Yingfeng Li
  7. Mengying Lan
  8. Gang Li
  9. Bing Zhu
(2020)
Sustained TNF-α stimulation induces transcriptional memory that greatly enhances signal sensitivity and robustness
eLife 9:e61965.
https://doi.org/10.7554/eLife.61965

Share this article

https://doi.org/10.7554/eLife.61965

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.

    1. Chromosomes and Gene Expression
    Signe Penner-Goeke, Elisabeth B Binder
    Insight

    A technique called mSTARR-seq sheds light on how DNA methylation may shape responses to external stimuli by altering the activity of sequences that control gene expression.