Metage2Metabo, microbiota-scale metabolic complementarity for the identication of key species

  1. Arnaud Belcour
  2. Clémence Frioux  Is a corresponding author
  3. Méziane Aite
  4. Anthony Bretaudeau
  5. Falk Hildebrand
  6. Anne Siegel
  1. Univ Rennes, Inria, CNRS, IRISA, France
  2. Inria, France
  3. INRAE, UMR IGEPP, France
  4. Quadram Institute, United Kingdom

Abstract

To capture the functional diversity of microbiota, one must identify metabolic functions and species of interest within hundreds or thousands of microorganisms. We present Metage2Metabo (M2M) a resource that meets the need for de-novo functional screening of genome-scale metabolic networks (GSMNs) at the scale of a metagenome, and the identification of critical species with respect to metabolic cooperation. M2M comprises a flexible pipeline for the characterisation of individual metabolisms and collective metabolic complementarity. In addition, M2M identifies key species, that are meaningful members of the community for functions of interest. We demonstrate that M2M is applicable to collections of genomes as well as metagenome-assembled genomes, permits an efficient GSMN reconstruction with Pathway Tools, and assesses the cooperation potential between species. M2M identifies key organisms by reducing the complexity of a large-scale microbiota into minimal communities with equivalent properties, suitable for further analyses.

Data availability

Data for metabolic modelling is available in https://github.com/AuReMe/metage2metabo/tree/master/article_data .

The following previously published data sets were used

Article and author information

Author details

  1. Arnaud Belcour

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1170-0785
  2. Clémence Frioux

    Pleiade, Inria, Talence, France
    For correspondence
    clemence.frioux@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2114-0697
  3. Méziane Aite

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anthony Bretaudeau

    BioInformatics Platform for Agroecosystems Arthropods (BIPAA), INRAE, UMR IGEPP, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Falk Hildebrand

    Quadram Institute, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne Siegel

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

BBSRC (Gut Microbes and Health BB/r012490/1,and its constituent project BBS/e/F/000Pr1035)

  • Clémence Frioux
  • Falk Hildebrand

2 (IDEALG (ANR-10-BTBR-04) Investissements d'Avenir)

  • Arnaud Belcour
  • Clémence Frioux
  • Méziane Aite

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. María Mercedes Zambrano, CorpoGen, Colombia

Version history

  1. Received: August 10, 2020
  2. Accepted: December 25, 2020
  3. Accepted Manuscript published: December 29, 2020 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)

Copyright

© 2020, Belcour et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,486
    views
  • 566
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnaud Belcour
  2. Clémence Frioux
  3. Méziane Aite
  4. Anthony Bretaudeau
  5. Falk Hildebrand
  6. Anne Siegel
(2020)
Metage2Metabo, microbiota-scale metabolic complementarity for the identication of key species
eLife 9:e61968.
https://doi.org/10.7554/eLife.61968

Share this article

https://doi.org/10.7554/eLife.61968

Further reading

    1. Computational and Systems Biology
    Maksim Kleverov, Daria Zenkova ... Alexey A Sergushichev
    Research Article

    Transcriptomic profiling became a standard approach to quantify a cell state, which led to accumulation of huge amount of public gene expression datasets. However, both reuse of these datasets or analysis of newly generated ones requires significant technical expertise. Here we present Phantasus - a user-friendly web-application for interactive gene expression analysis which provides a streamlined access to more than 96000 public gene expression datasets, as well as allows analysis of user-uploaded datasets. Phantasus integrates an intuitive and highly interactive JavaScript-based heatmap interface with an ability to run sophisticated R-based analysis methods. Overall Phantasus allows users to go all the way from loading, normalizing and filtering data to doing differential gene expression and downstream analysis. Phantasus can be accessed on-line at https://alserglab.wustl.edu/phantasus or can be installed locally from Bioconductor (https://bioconductor.org/packages/phantasus). Phantasus source code is available at https://github.com/ctlab/phantasus under MIT license.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.