Metage2Metabo, microbiota-scale metabolic complementarity for the identication of key species

  1. Arnaud Belcour
  2. Clémence Frioux  Is a corresponding author
  3. Méziane Aite
  4. Anthony Bretaudeau
  5. Falk Hildebrand
  6. Anne Siegel
  1. Univ Rennes, Inria, CNRS, IRISA, France
  2. Inria, France
  3. INRAE, UMR IGEPP, France
  4. Quadram Institute, United Kingdom

Abstract

To capture the functional diversity of microbiota, one must identify metabolic functions and species of interest within hundreds or thousands of microorganisms. We present Metage2Metabo (M2M) a resource that meets the need for de-novo functional screening of genome-scale metabolic networks (GSMNs) at the scale of a metagenome, and the identification of critical species with respect to metabolic cooperation. M2M comprises a flexible pipeline for the characterisation of individual metabolisms and collective metabolic complementarity. In addition, M2M identifies key species, that are meaningful members of the community for functions of interest. We demonstrate that M2M is applicable to collections of genomes as well as metagenome-assembled genomes, permits an efficient GSMN reconstruction with Pathway Tools, and assesses the cooperation potential between species. M2M identifies key organisms by reducing the complexity of a large-scale microbiota into minimal communities with equivalent properties, suitable for further analyses.

Data availability

Data for metabolic modelling is available in https://github.com/AuReMe/metage2metabo/tree/master/article_data .

The following previously published data sets were used

Article and author information

Author details

  1. Arnaud Belcour

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1170-0785
  2. Clémence Frioux

    Pleiade, Inria, Talence, France
    For correspondence
    clemence.frioux@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2114-0697
  3. Méziane Aite

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anthony Bretaudeau

    BioInformatics Platform for Agroecosystems Arthropods (BIPAA), INRAE, UMR IGEPP, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Falk Hildebrand

    Quadram Institute, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne Siegel

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

BBSRC (Gut Microbes and Health BB/r012490/1,and its constituent project BBS/e/F/000Pr1035)

  • Clémence Frioux
  • Falk Hildebrand

2 (IDEALG (ANR-10-BTBR-04) Investissements d'Avenir)

  • Arnaud Belcour
  • Clémence Frioux
  • Méziane Aite

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Belcour et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,254
    views
  • 643
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnaud Belcour
  2. Clémence Frioux
  3. Méziane Aite
  4. Anthony Bretaudeau
  5. Falk Hildebrand
  6. Anne Siegel
(2020)
Metage2Metabo, microbiota-scale metabolic complementarity for the identication of key species
eLife 9:e61968.
https://doi.org/10.7554/eLife.61968

Share this article

https://doi.org/10.7554/eLife.61968

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.