Metage2Metabo, microbiota-scale metabolic complementarity for the identication of key species

  1. Arnaud Belcour
  2. Clémence Frioux  Is a corresponding author
  3. Méziane Aite
  4. Anthony Bretaudeau
  5. Falk Hildebrand
  6. Anne Siegel
  1. Univ Rennes, Inria, CNRS, IRISA, France
  2. Inria, France
  3. INRAE, UMR IGEPP, France
  4. Quadram Institute, United Kingdom

Abstract

To capture the functional diversity of microbiota, one must identify metabolic functions and species of interest within hundreds or thousands of microorganisms. We present Metage2Metabo (M2M) a resource that meets the need for de-novo functional screening of genome-scale metabolic networks (GSMNs) at the scale of a metagenome, and the identification of critical species with respect to metabolic cooperation. M2M comprises a flexible pipeline for the characterisation of individual metabolisms and collective metabolic complementarity. In addition, M2M identifies key species, that are meaningful members of the community for functions of interest. We demonstrate that M2M is applicable to collections of genomes as well as metagenome-assembled genomes, permits an efficient GSMN reconstruction with Pathway Tools, and assesses the cooperation potential between species. M2M identifies key organisms by reducing the complexity of a large-scale microbiota into minimal communities with equivalent properties, suitable for further analyses.

Data availability

Data for metabolic modelling is available in https://github.com/AuReMe/metage2metabo/tree/master/article_data .

The following previously published data sets were used

Article and author information

Author details

  1. Arnaud Belcour

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1170-0785
  2. Clémence Frioux

    Pleiade, Inria, Talence, France
    For correspondence
    clemence.frioux@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2114-0697
  3. Méziane Aite

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Anthony Bretaudeau

    BioInformatics Platform for Agroecosystems Arthropods (BIPAA), INRAE, UMR IGEPP, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Falk Hildebrand

    Quadram Institute, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Anne Siegel

    Dyliss, Univ Rennes, Inria, CNRS, IRISA, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

BBSRC (Gut Microbes and Health BB/r012490/1,and its constituent project BBS/e/F/000Pr1035)

  • Clémence Frioux
  • Falk Hildebrand

2 (IDEALG (ANR-10-BTBR-04) Investissements d'Avenir)

  • Arnaud Belcour
  • Clémence Frioux
  • Méziane Aite

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. María Mercedes Zambrano, CorpoGen, Colombia

Publication history

  1. Received: August 10, 2020
  2. Accepted: December 25, 2020
  3. Accepted Manuscript published: December 29, 2020 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)

Copyright

© 2020, Belcour et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,329
    Page views
  • 343
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Arnaud Belcour
  2. Clémence Frioux
  3. Méziane Aite
  4. Anthony Bretaudeau
  5. Falk Hildebrand
  6. Anne Siegel
(2020)
Metage2Metabo, microbiota-scale metabolic complementarity for the identication of key species
eLife 9:e61968.
https://doi.org/10.7554/eLife.61968

Further reading

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Bitya Raphael-Mizrahi et al.
    Research Article

    The endocannabinoid system consists mainly of 2-arachidonoylglycerol and anandamide, as well as cannabinoid receptor type 1 (CB1) and type 2 (CB2). Based on previous studies, we hypothesized that a circulating peptide previously identified as Osteogenic Growth Peptide (OGP) maintains a bone-protective CB2 tone. We tested OGP activity in mouse models and cells, and in human osteoblasts. We show that the OGP effects on osteoblast proliferation, osteoclastogenesis, and macrophage inflammation in vitro, as well as rescue of ovariectomy-induced bone loss and prevention of ear edema in vivo are all abrogated by genetic or pharmacological ablation of CB2. We also demonstrate that OGP binds at CB2 and may act as both an agonist and positive allosteric modulator in the presence of other lipophilic agonists. In premenopausal women, OGP circulating levels significantly decline with age. In adult mice, exogenous administration of OGP completely prevented age-related bone loss. Our findings suggest that OGP attenuates age-related bone loss by maintaining a skeletal CB2 tone. Importantly, they also indicate the occurrence of an endogenous peptide that signals via CB2 receptor in health and disease.

    1. Cancer Biology
    2. Computational and Systems Biology
    Iurii Petrov, Andrey Alexeyenko
    Research Article

    Late advances in genome sequencing expanded the space of known cancer driver genes several-fold. However, most of this surge was based on computational analysis of somatic mutation frequencies and/or their impact on the protein function. On the contrary, experimental research necessarily accounted for functional context of mutations interacting with other genes and conferring cancer phenotypes. Eventually, just such results become 'hard currency' of cancer biology. The new method, NEAdriver employs knowledge accumulated thus far in the form of global interaction network and functionally annotated pathways in order to recover known and predict novel driver genes. The driver discovery was individualized by accounting for mutations' co-occurrence in each tumour genome - as an alternative to summarizing information over the whole cancer patient cohorts. For each somatic genome change, probabilistic estimates from two lanes of network analysis were combined into joint likelihoods of being a driver. Thus, ability to detect previously unnoticed candidate driver events emerged from combining individual genomic context with network perspective. The procedure was applied to ten largest cancer cohorts followed by evaluating error rates against previous cancer gene sets. The discovered driver combinations were shown to be informative on cancer outcome. This revealed driver genes with individually sparse mutation patterns that would not be detectable by other computational methods and related to cancer biology domains poorly covered by previous analyses. In particular, recurrent mutations of collagen, laminin, and integrin genes were observed in the adenocarcinoma and glioblastoma cancers. Considering constellation patterns of candidate drivers in individual cancer genomes opens a novel avenue for personalized cancer medicine.