Small molecule cognitive enhancer reverses age-related memory decline in mice

  1. Karen Krukowski  Is a corresponding author
  2. Amber Nolan
  3. Elma S Frias
  4. Morgane Boone
  5. Gonzalo Ureta
  6. Katherine Grue
  7. Maria-Serena Paladini
  8. Edward Elizarraras
  9. Luz Delgado
  10. Sebastian Bernales
  11. Peter Walter  Is a corresponding author
  12. Susanna Rosi  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Fundación Ciencia & Vida, Chile
  3. Howard Hughes Medical Institute, University of California, San Francisco, United States

Abstract

With increased life expectancy age-associated cognitive decline becomes a growing concern, even in the absence of recognizable neurodegenerative disease. The integrated stress response (ISR) is activated during aging and contributes to age-related brain phenotypes. We demonstrate that treatment with the drug-like small-molecule ISR inhibitor ISRIB reverses ISR activation in the brain, as indicated by decreased levels of activating transcription factor 4 (ATF4) and phosphorylated eukaryotic translation initiation factor eIF2. Furthermore, ISRIB treatment reverses spatial memory deficits and ameliorates working memory in old mice. At the cellular level in the hippocampus, ISR inhibition i) rescues intrinsic neuronal electrophysiological properties, ii) restores spine density and iii) reduces immune profiles, specifically interferon and T cell-mediated responses. Thus, pharmacological interference with the ISR emerges as a promising intervention strategy for combating age-related cognitive decline in otherwise healthy individuals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Karen Krukowski

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    For correspondence
    karen.krukowski@ucsf.edu
    Competing interests
    No competing interests declared.
  2. Amber Nolan

    Brain and Spinal Injury Center, Department of Pathology,, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Elma S Frias

    Brain and Spinal Injury Center, Department of Pathology,, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Morgane Boone

    Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7807-5542
  5. Gonzalo Ureta

    Fundación Ciencia & Vida, Santiago, Chile
    Competing interests
    Gonzalo Ureta, Works at Fundacion Ciencia & Vida and receive partial funding from Praxis Biotech..
  6. Katherine Grue

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Maria-Serena Paladini

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Edward Elizarraras

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Luz Delgado

    Fundación Ciencia & Vida, Santiago, Chile
    Competing interests
    No competing interests declared.
  10. Sebastian Bernales

    Fundación Ciencia & Vida, Santiago, Chile
    Competing interests
    Sebastian Bernales, SB is an employee of Praxis Biotech..
  11. Peter Walter

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    peter@walterlab.ucsf.edu
    Competing interests
    Peter Walter, P.W. is an inventor on U.S. Patent 9708247 held by the Regents of the University of California that describes ISRIB and its analogs. Rights to the invention have been licensed by UCSF to Calico. P.W. is a consultant for Praxis Biotech LLC and Black Belt TX Limited..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6849-708X
  12. Susanna Rosi

    Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    For correspondence
    susanna.rosi@ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9269-3638

Funding

National Institute on Aging (F32AG054126)

  • Karen Krukowski

National Institutes of Health (R01AG056770)

  • Susanna Rosi

National Center for Advancing Translational Sciences (TL1 TR001871)

  • Amber Nolan

National Institute of Neurological Disorders and Stroke (K08NS114170)

  • Amber Nolan

Howard Hughes Medical Institute

  • Peter Walter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of California, San Francisco.(Protocol 170302).

Copyright

© 2020, Krukowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 49,379
    views
  • 4,530
    downloads
  • 110
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karen Krukowski
  2. Amber Nolan
  3. Elma S Frias
  4. Morgane Boone
  5. Gonzalo Ureta
  6. Katherine Grue
  7. Maria-Serena Paladini
  8. Edward Elizarraras
  9. Luz Delgado
  10. Sebastian Bernales
  11. Peter Walter
  12. Susanna Rosi
(2020)
Small molecule cognitive enhancer reverses age-related memory decline in mice
eLife 9:e62048.
https://doi.org/10.7554/eLife.62048

Share this article

https://doi.org/10.7554/eLife.62048

Further reading

    1. Neuroscience
    Xin Zhao, Yurim Chae ... Katherine Tschida
    Research Article

    Social animals, including both humans and mice, are highly motivated to engage in social interactions. Short-term social isolation promotes social behavior, but the neural circuits through which it does so remain incompletely understood. Here, we sought to identify neurons that promote social behavior in single-housed female mice, which exhibit increased rates of social investigation, social ultrasonic vocalizations (USVs), and mounting during same-sex interactions that follow a period of short-term (3 days) isolation. We first used immunostaining for the immediate early gene Fos to identify a population of neurons in the preoptic hypothalamus (POA) that increase their activity in single-housed females following same-sex interactions (POAsocial neurons) but not in single-housed females that did not engage in social interactions. TRAP2-mediated chemogenetic silencing of POAsocial neurons in single-housed females significantly attenuates the effects of short-term isolation on social investigation, USV production, and mounting. In contrast, caspase-mediated ablation of POAsocial neurons in single-housed females robustly attenuates mounting but does not decrease social investigation or USV production. Optogenetic activation of POAsocial neurons in group-housed females promotes social investigation and USV production but does not recapitulate the effects of short-term isolation on mounting. To understand whether a similar population of POAsocial neurons promotes social behavior in single-housed males, we performed Fos immunostaining in single-housed males following either same-sex or opposite-sex social interactions. These experiments revealed a population of POA neurons that increase Fos expression in single-housed males following opposite-sex, but not same-sex, interactions. Chemogenetic silencing of POAsocial neurons in single-housed males during interactions with females reduces mounting but does not affect social investigation or USV production. These experiments identify a population of hypothalamic neurons that promote social behavior following short-term isolation in a sex- and social context-dependent manner.

    1. Neuroscience
    David C Williams, Amanda Chu ... Michael A McDannald
    Research Advance

    Recognizing and responding to threat cues is essential to survival. Freezing is a predominant threat behavior in rats. We have recently shown that a threat cue can organize diverse behaviors beyond freezing, including locomotion (Chu et al., 2024). However, that experimental design was complex, required many sessions, and had rats receive many foot shock presentations. Moreover, the findings were descriptive. Here, we gave female and male Long Evans rats cue light illumination paired or unpaired with foot shock (8 total) in a conditioned suppression setting, using a range of shock intensities (0.15, 0.25, 0.35, or 0.50 mA). We found that conditioned suppression was only observed at higher foot shock intensities (0.35 mA and 0.50 mA). We constructed comprehensive temporal ethograms by scoring 22,272 frames across 12 behavior categories in 200-ms intervals around cue light illumination. The 0.50 mA and 0.35 mA shock-paired visual cues suppressed reward seeking, rearing, and scaling, as well as light-directed rearing and light-directed scaling. The shock-paired visual cue further elicited locomotion and freezing. Linear discriminant analyses showed that ethogram data could accurately classify rats into paired and unpaired groups. Using complete ethogram data produced superior classification compared to behavior subsets, including an Immobility subset featuring freezing. The results demonstrate diverse threat behaviors – in a short and simple procedure – containing sufficient information to distinguish the visual fear conditioning status of individual rats.