Small molecule cognitive enhancer reverses age-related memory decline in mice

  1. Karen Krukowski  Is a corresponding author
  2. Amber Nolan
  3. Elma S Frias
  4. Morgane Boone
  5. Gonzalo Ureta
  6. Katherine Grue
  7. Maria-Serena Paladini
  8. Edward Elizarraras
  9. Luz Delgado
  10. Sebastian Bernales
  11. Peter Walter  Is a corresponding author
  12. Susanna Rosi  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Fundación Ciencia & Vida, Chile
  3. Howard Hughes Medical Institute, University of California, San Francisco, United States

Abstract

With increased life expectancy age-associated cognitive decline becomes a growing concern, even in the absence of recognizable neurodegenerative disease. The integrated stress response (ISR) is activated during aging and contributes to age-related brain phenotypes. We demonstrate that treatment with the drug-like small-molecule ISR inhibitor ISRIB reverses ISR activation in the brain, as indicated by decreased levels of activating transcription factor 4 (ATF4) and phosphorylated eukaryotic translation initiation factor eIF2. Furthermore, ISRIB treatment reverses spatial memory deficits and ameliorates working memory in old mice. At the cellular level in the hippocampus, ISR inhibition i) rescues intrinsic neuronal electrophysiological properties, ii) restores spine density and iii) reduces immune profiles, specifically interferon and T cell-mediated responses. Thus, pharmacological interference with the ISR emerges as a promising intervention strategy for combating age-related cognitive decline in otherwise healthy individuals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Karen Krukowski

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    For correspondence
    karen.krukowski@ucsf.edu
    Competing interests
    No competing interests declared.
  2. Amber Nolan

    Brain and Spinal Injury Center, Department of Pathology,, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Elma S Frias

    Brain and Spinal Injury Center, Department of Pathology,, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  4. Morgane Boone

    Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7807-5542
  5. Gonzalo Ureta

    Fundación Ciencia & Vida, Santiago, Chile
    Competing interests
    Gonzalo Ureta, Works at Fundacion Ciencia & Vida and receive partial funding from Praxis Biotech..
  6. Katherine Grue

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  7. Maria-Serena Paladini

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  8. Edward Elizarraras

    Department of Physical Therapy and Rehabilitation Science, Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Luz Delgado

    Fundación Ciencia & Vida, Santiago, Chile
    Competing interests
    No competing interests declared.
  10. Sebastian Bernales

    Fundación Ciencia & Vida, Santiago, Chile
    Competing interests
    Sebastian Bernales, SB is an employee of Praxis Biotech..
  11. Peter Walter

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    peter@walterlab.ucsf.edu
    Competing interests
    Peter Walter, P.W. is an inventor on U.S. Patent 9708247 held by the Regents of the University of California that describes ISRIB and its analogs. Rights to the invention have been licensed by UCSF to Calico. P.W. is a consultant for Praxis Biotech LLC and Black Belt TX Limited..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6849-708X
  12. Susanna Rosi

    Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, United States
    For correspondence
    susanna.rosi@ucsf.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9269-3638

Funding

National Institute on Aging (F32AG054126)

  • Karen Krukowski

National Institutes of Health (R01AG056770)

  • Susanna Rosi

National Center for Advancing Translational Sciences (TL1 TR001871)

  • Amber Nolan

National Institute of Neurological Disorders and Stroke (K08NS114170)

  • Amber Nolan

Howard Hughes Medical Institute

  • Peter Walter

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of the University of California, San Francisco.(Protocol 170302).

Copyright

© 2020, Krukowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 49,543
    views
  • 4,557
    downloads
  • 118
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karen Krukowski
  2. Amber Nolan
  3. Elma S Frias
  4. Morgane Boone
  5. Gonzalo Ureta
  6. Katherine Grue
  7. Maria-Serena Paladini
  8. Edward Elizarraras
  9. Luz Delgado
  10. Sebastian Bernales
  11. Peter Walter
  12. Susanna Rosi
(2020)
Small molecule cognitive enhancer reverses age-related memory decline in mice
eLife 9:e62048.
https://doi.org/10.7554/eLife.62048

Share this article

https://doi.org/10.7554/eLife.62048

Further reading

    1. Neuroscience
    Yafen Li, Yixuan Lin ... Antao Chen
    Research Article

    Concurrent verbal working memory task can eliminate the color-word Stroop effect. Previous research, based on specific and limited resources, suggested that the disappearance of the conflict effect was due to the memory information preempting the resources for distractors. However, it remains unclear which particular stage of Stroop conflict processing is influenced by working memory loads. In this study, electroencephalography (EEG) recordings with event-related potential (ERP) analyses, time-frequency analyses, multivariate pattern analyses (MVPAs), and representational similarity analyses (RSAs) were applied to provide an in-depth investigation of the aforementioned issue. Subjects were required to complete the single task (the classical manual color-word Stroop task) and the dual task (the Sternberg working memory task combined with the Stroop task), respectively. Behaviorally, the results indicated that the Stroop effect was eliminated in the dual-task condition. The EEG results showed that the concurrent working memory task did not modulate the P1, N450, and alpha bands. However, it modulated the sustained potential (SP), late theta (740–820 ms), and beta (920–1040 ms) power, showing no difference between congruent and incongruent trials in the dual-task condition but significant difference in the single-task condition. Importantly, the RSA results revealed that the neural activation pattern of the late theta was similar to the response interaction pattern. Together, these findings implied that the concurrent working memory task eliminated the Stroop effect through disrupting stimulus-response mapping.

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.