Longitudinal stability of medial temporal lobe connectivity is associated with tau-related memory decline

  1. Quanjing Chen  Is a corresponding author
  2. Adam Turnbull
  3. Timothy M Baran
  4. Feng V Lin
  1. University of Rochester, United States

Abstract

The relationship between AD pathology and cognitive decline is an important topic in the aging research field. Recent studies suggest that memory deficits are more susceptible to phosphorylated tau (Ptau), than amyloid-beta. However, little is known regarding the neurocognitive mechanisms linking Ptau and memory related decline. Here, we extracted data from ADNI participants with CSF (cerebrospinal fluid) Ptau collected at baseline, diffusion tensor imaging measure twice, two-year apart, and longitudinal memory data over five years. We defined three age- and education-matched groups: Ptau negative cognitively unimpaired, Ptau positive cognitively unimpaired, and Ptau positive individuals with mild cognitive impairment. We found the presence of CSF Ptau at baseline was related to a loss of structural stability in medial temporal lobe connectivity in a way that matched proposed disease progression, and this loss of stability in connections known to be important for memory moderated the relationship between Ptau accumulation and memory decline.

Data availability

Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

The following previously published data sets were used

Article and author information

Author details

  1. Quanjing Chen

    Brain and Cognitive sciences, University of Rochester, Rochester, United States
    For correspondence
    quanjingchen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4630-6817
  2. Adam Turnbull

    School of Nursing, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Timothy M Baran

    Department of Imaging Sciences, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Feng V Lin

    Department of Imaging Sciences, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (R01 NR015452)

  • Feng V Lin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human subjects: The current study is a secondary data analysis of limited-identified data per data user agreement between ADNI and F.L.. The human subject research of original ADNI data collection was conducted at each ADNI data collection site (see the full list of sites http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf); and written informed consent was obtained from each participant (see http://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf for detailed information about ethical procedures for ADNI). Protocol_11.19.14

Copyright

© 2020, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,412
    views
  • 165
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Quanjing Chen
  2. Adam Turnbull
  3. Timothy M Baran
  4. Feng V Lin
(2020)
Longitudinal stability of medial temporal lobe connectivity is associated with tau-related memory decline
eLife 9:e62114.
https://doi.org/10.7554/eLife.62114

Share this article

https://doi.org/10.7554/eLife.62114

Further reading

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.

    1. Computational and Systems Biology
    2. Neuroscience
    Jian Qiu, Margaritis Voliotis ... Martin J Kelly
    Research Article

    Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.