Topographic gradients of intrinsic dynamics across neocortex

  1. Golia Shafiei  Is a corresponding author
  2. Ross D Markello
  3. Reinder Vos de Wael
  4. Boris C Bernhardt
  5. Ben D Fulcher
  6. Bratislav Misic  Is a corresponding author
  1. McGill University, Canada
  2. University of Sydney, Australia

Abstract

The intrinsic dynamics of neuronal populations are shaped by both microscale attributes and macroscale connectome architecture. Here we comprehensively characterize the rich temporal patterns of neural activity throughout the human brain. Applying massive temporal feature extraction to regional haemodynamic activity, we systematically estimate over 6,000 statistical properties of individual brain regions' time-series across the neocortex. We identify two robust spatial gradients of intrinsic dynamics, one spanning a ventromedial-dorsolateral axis and dominated by measures of signal autocorrelation, and the other spanning a unimodal-transmodal axis and dominated by measures of dynamic range. These gradients reflect spatial patterns of gene expression, intracortical myelin and cortical thickness, as well as structural and functional network embedding. Importantly, these gradients are correlated with patterns of meta-analytic functional activation, differentiating cognitive versus affective processing and sensory versus higher-order cognitive processing. Altogether, these findings demonstrate a link between microscale and macroscale architecture, intrinsic dynamics, and cognition.

Data availability

All data used in this study is publicly available. Detailed information about the datasets is available in the manuscript.

The following previously published data sets were used

Article and author information

Author details

  1. Golia Shafiei

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    For correspondence
    golia.shafiei@mail.mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2036-5571
  2. Ross D Markello

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1057-1336
  3. Reinder Vos de Wael

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Boris C Bernhardt

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Ben D Fulcher

    School of Physics, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3003-4055
  6. Bratislav Misic

    McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
    For correspondence
    bratislav.misic@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0307-2862

Funding

Natural Sciences and Engineering Research Council of Canada

  • Golia Shafiei

Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN #017-04265)

  • Bratislav Misic

Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives initiative

  • Bratislav Misic

Canada Research Chairs Program

  • Bratislav Misic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lucina Q Uddin, University of Miami, United States

Ethics

Human subjects: Informed consent and consent to publish were obtained during data acquisition process (all data used in this study were obtained from publicly available datasets).

Version history

  1. Received: August 14, 2020
  2. Accepted: December 16, 2020
  3. Accepted Manuscript published: December 17, 2020 (version 1)
  4. Version of Record published: December 29, 2020 (version 2)

Copyright

© 2020, Shafiei et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,759
    views
  • 497
    downloads
  • 98
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Golia Shafiei
  2. Ross D Markello
  3. Reinder Vos de Wael
  4. Boris C Bernhardt
  5. Ben D Fulcher
  6. Bratislav Misic
(2020)
Topographic gradients of intrinsic dynamics across neocortex
eLife 9:e62116.
https://doi.org/10.7554/eLife.62116

Share this article

https://doi.org/10.7554/eLife.62116

Further reading

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.