1. Structural Biology and Molecular Biophysics
Download icon

Structural basis for transcription complex disruption by the Mfd translocase

Research Article
  • Cited 6
  • Views 1,605
  • Annotations
Cite this article as: eLife 2021;10:e62117 doi: 10.7554/eLife.62117

Abstract

Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (EC). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.

Data availability

The cryo-EM density maps have been deposited in the EMDataBank under accession codes EMD-21996 [L1(ATP)], EMD-22006 [L2(ADP)], EMD-22012 [I(ATP)], EMD-22039 [II(ATP)], EMD-22043 [III(ADP)], EMD-22044 [IV(ADP)], and EMD-22045 [V(ATP)]. The atomic coordinates have been deposited in the Protein Data Bank under accession codes 6X26 [L1(ATP)], 6X2F [L2(ADP)], 6X2N [I(ATP)], 6X43 [II(ATP)], 6X4W [III(ADP)], 6XYY [IV(ADP)], and 6X5Q [V(ATP)].

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jin Young Kang

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eliza Llewellyn

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James Chen

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul D B Olinares

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3429-6618
  5. Joshua Brewer

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian T Chait

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth A Campbell

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Seth A Darst

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    For correspondence
    darst@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8241-3153

Funding

National Institute of General Medical Sciences (P41 GM109824)

  • Brian T Chait

National Institute of General Medical Sciences (P41 GM103314)

  • Brian T Chait

National Institute of General Medical Sciences (R01 GM114450)

  • Elizabeth A Campbell

National Institute of General Medical Sciences (R35 GM118130)

  • Seth A Darst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University School of Medicine, United States

Publication history

  1. Received: August 14, 2020
  2. Accepted: January 21, 2021
  3. Accepted Manuscript published: January 22, 2021 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)

Copyright

© 2021, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,605
    Page views
  • 237
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Carolina Franco Nitta et al.
    Research Article

    Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.

    1. Structural Biology and Molecular Biophysics
    Shan Zhou et al.
    Research Article

    Pathogenic mycobacteria pose a sustained threat to global human health. Recently, cytochrome bcc complexes have gained interest as targets for antibiotic drug development. However, there is currently no structural information for the cytochrome bcc complex from these pathogenic mycobacteria. Here, we report the structures of Mycobacterium tuberculosis cytochrome bcc alone (2.68 Å resolution) and in complex with clinical drug candidates Q203 (2.67 Å resolution) and TB47 (2.93 Å resolution) determined by single-particle cryo-electron microscopy. M. tuberculosis cytochrome bcc forms a dimeric assembly with endogenous menaquinone/menaquinol bound at the quinone/quinol-binding pockets. We observe Q203 and TB47 bound at the quinol-binding site and stabilized by hydrogen bonds with the side chains of QcrBThr313 and QcrBGlu314, residues that are conserved across pathogenic mycobacteria. These high-resolution images provide a basis for the design of new mycobacterial cytochrome bcc inhibitors that could be developed into broad-spectrum drugs to treat mycobacterial infections.