Abstract

Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (EC). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.

Data availability

The cryo-EM density maps have been deposited in the EMDataBank under accession codes EMD-21996 [L1(ATP)], EMD-22006 [L2(ADP)], EMD-22012 [I(ATP)], EMD-22039 [II(ATP)], EMD-22043 [III(ADP)], EMD-22044 [IV(ADP)], and EMD-22045 [V(ATP)]. The atomic coordinates have been deposited in the Protein Data Bank under accession codes 6X26 [L1(ATP)], 6X2F [L2(ADP)], 6X2N [I(ATP)], 6X43 [II(ATP)], 6X4W [III(ADP)], 6XYY [IV(ADP)], and 6X5Q [V(ATP)].

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jin Young Kang

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eliza Llewellyn

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James Chen

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul D B Olinares

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3429-6618
  5. Joshua Brewer

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian T Chait

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth A Campbell

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Seth A Darst

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    For correspondence
    darst@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8241-3153

Funding

National Institute of General Medical Sciences (P41 GM109824)

  • Brian T Chait

National Institute of General Medical Sciences (P41 GM103314)

  • Brian T Chait

National Institute of General Medical Sciences (R01 GM114450)

  • Elizabeth A Campbell

National Institute of General Medical Sciences (R35 GM118130)

  • Seth A Darst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. James M Berger, Johns Hopkins University School of Medicine, United States

Version history

  1. Received: August 14, 2020
  2. Accepted: January 21, 2021
  3. Accepted Manuscript published: January 22, 2021 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)

Copyright

© 2021, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,510
    views
  • 344
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jin Young Kang
  2. Eliza Llewellyn
  3. James Chen
  4. Paul D B Olinares
  5. Joshua Brewer
  6. Brian T Chait
  7. Elizabeth A Campbell
  8. Seth A Darst
(2021)
Structural basis for transcription complex disruption by the Mfd translocase
eLife 10:e62117.
https://doi.org/10.7554/eLife.62117

Share this article

https://doi.org/10.7554/eLife.62117

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.