1. Neuroscience
Download icon

Performance in even a simple perceptual task depends on mouse secondary visual areas

  1. Hannah C Goldbach
  2. Bradley Akitake
  3. Caitlin E Leedy
  4. Mark H Histed  Is a corresponding author
  1. National Institutes of Health, United States
Research Article
  • Cited 0
  • Views 593
  • Annotations
Cite this article as: eLife 2021;10:e62156 doi: 10.7554/eLife.62156

Abstract

Primary visual cortex (V1) in the mouse projects to numerous brain areas, including several secondary visual areas, frontal cortex, and basal ganglia. While it has been demonstrated that optogenetic silencing of V1 strongly impairs visually-guided behavior, it is not known which downstream areas are required for visual behaviors. Here we trained mice to perform a contrast-increment change detection task, for which substantial stimulus information is present in V1. Optogenetic silencing of visual responses in secondary visual areas revealed that their activity is required for even this simple visual task. In vivo electrophysiology showed that, although inhibiting secondary visual areas could produce some feedback effects in V1, the principal effect was profound suppression at the location of the optogenetic light. The results show that pathways through secondary visual areas are necessary for even simple visual behaviors.

Article and author information

Author details

  1. Hannah C Goldbach

    National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5697-4694
  2. Bradley Akitake

    National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1817-4573
  3. Caitlin E Leedy

    National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9277-5409
  4. Mark H Histed

    National Institute of Mental Health, National Institutes of Health, Bethesda, United States
    For correspondence
    mark.histed@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8235-7908

Funding

National Institutes of Health (Intramural Program)

  • Mark H Histed

National Institutes of Health (U19NS107464)

  • Mark H Histed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were conducted in accordance with the guidelines and regulations of the National Institutes of Health, according to an approved institutional animal care and use committee (IACUC) protocol (UNCB01) of the National Institute of Mental Health Intramural Program.

Reviewing Editor

  1. Tatiana Pasternak, National Institute of Neurological Disorders and Stroke, United States

Publication history

  1. Received: August 15, 2020
  2. Accepted: January 29, 2021
  3. Accepted Manuscript published: February 1, 2021 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 593
    Page views
  • 119
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Timothy S Balmer et al.
    Research Article Updated

    Synapses of glutamatergic mossy fibers (MFs) onto cerebellar unipolar brush cells (UBCs) generate slow excitatory (ON) or inhibitory (OFF) postsynaptic responses dependent on the complement of glutamate receptors expressed on the UBC’s large dendritic brush. Using mouse brain slice recording and computational modeling of synaptic transmission, we found that substantial glutamate is maintained in the UBC synaptic cleft, sufficient to modify spontaneous firing in OFF UBCs and tonically desensitize AMPARs of ON UBCs. The source of this ambient glutamate was spontaneous, spike-independent exocytosis from the MF terminal, and its level was dependent on activity of glutamate transporters EAAT1–2. Increasing levels of ambient glutamate shifted the polarity of evoked synaptic responses in ON UBCs and altered the phase of responses to in vivo-like synaptic activity. Unlike classical fast synapses, receptors at the UBC synapse are virtually always exposed to a significant level of glutamate, which varies in a graded manner during transmission.

    1. Developmental Biology
    2. Neuroscience
    Hiroki Takechi et al.
    Research Article

    Transmembrane protein Golden goal (Gogo) interacts with atypical cadherin Flamingo to direct R8 photoreceptor axons in the Drosophila visual system. However, the precise mechanisms underlying Gogo regulation during columnar- and layer-specific R8 axon targeting are unknown. Our studies demonstrated that the insulin secreted from surface and cortex glia switches the phosphorylation status of Gogo, thereby regulating its two distinct functions. Non-phosphorylated Gogo mediates the initial recognition of the glial protrusion in the center of the medulla column, whereas phosphorylated Gogo suppresses radial filopodia extension by counteracting Flamingo to maintain a one axon to one column ratio. Later, Gogo expression ceases during the midpupal stage, thus allowing R8 filopodia to extend vertically into the M3 layer. These results demonstrate that the long- and short-range signaling between the glia and R8 axon growth cones regulates growth cone dynamics in a stepwise manner, and thus shape the entire organization of the visual system.