A dual role for Cav1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse

  1. J Wesley Maddox
  2. Kate L Randall
  3. Ravi P Yadav
  4. Brittany Williams
  5. Jussara Hagen
  6. Paul J Derr
  7. Vasily Kerov
  8. Luca Della Santina
  9. Sheila A Baker
  10. Nikolai Artemyev
  11. Mrinalini Hoon
  12. Amy Lee  Is a corresponding author
  1. University of Iowa, United States
  2. University of Wisconsin, Madison, United States
  3. University of California, San Francisco, United States
  4. University of Iowa Carver College of Medicine, United States

Abstract

Synapses are fundamental information processing units that rely on voltage-gated Ca2+ (Cav) channels to trigger Ca2+-dependent neurotransmitter release. Cav channels also play Ca2+-independent roles in other biological contexts, but whether they do so in axon terminals is unknown. Here, we addressed this unknown with respect to the requirement for Cav1.4 L-type channels for the formation of rod photoreceptor synapses in the retina. Using a mouse strain expressing a non-conducting mutant form of Cav1.4, we report that the Cav1.4 protein, but not its Ca2+ conductance, is required for the molecular assembly of rod synapses; however, Cav1.4 Ca2+ signals are needed for the appropriate recruitment of postsynaptic partners. Our results support a model in which presynaptic Cav channels serve both as organizers of synaptic building blocks and as sources of Ca2+ ions in building the first synapse of the visual pathway and perhaps more broadly in the nervous system.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. J Wesley Maddox

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kate L Randall

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ravi P Yadav

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brittany Williams

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jussara Hagen

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul J Derr

    Neuroscience, University of Wisconsin, Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vasily Kerov

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Luca Della Santina

    Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sheila A Baker

    Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nikolai Artemyev

    Molecular Physiology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mrinalini Hoon

    Department of Neuroscience, University of Wisconsin, Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Amy Lee

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    For correspondence
    amy-lee@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8021-0443

Funding

National Eye Institute (EY 026817)

  • Amy Lee

McPherson Eye Research Institute

  • Mrinalini Hoon

Research to Prevent Blindness

  • Mrinalini Hoon

National Eye Institute (EY 029953)

  • J Wesley Maddox

National Eye Institute (EY 026477)

  • Brittany Williams

National Eye Institute (EY010843,EY012682)

  • Nikolai Artemyev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Teresa Giraldez, Universidad de La Laguna, Spain

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#7121262-025) of the University of Iowa. The protocol was approved by the Office of Institutional Animal Care and Use Committee of the University of Iowa (A3021-01).

Version history

  1. Received: August 17, 2020
  2. Accepted: September 9, 2020
  3. Accepted Manuscript published: September 17, 2020 (version 1)
  4. Version of Record published: October 15, 2020 (version 2)

Copyright

© 2020, Maddox et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,097
    views
  • 351
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Wesley Maddox
  2. Kate L Randall
  3. Ravi P Yadav
  4. Brittany Williams
  5. Jussara Hagen
  6. Paul J Derr
  7. Vasily Kerov
  8. Luca Della Santina
  9. Sheila A Baker
  10. Nikolai Artemyev
  11. Mrinalini Hoon
  12. Amy Lee
(2020)
A dual role for Cav1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse
eLife 9:e62184.
https://doi.org/10.7554/eLife.62184

Share this article

https://doi.org/10.7554/eLife.62184

Further reading

    1. Neuroscience
    Alexandra L Jellinger, Rebecca L Suthard ... Steve Ramirez
    Research Article

    Negative memories engage a brain and body-wide stress response in humans that can alter cognition and behavior. Prolonged stress responses induce maladaptive cellular, circuit, and systems-level changes that can lead to pathological brain states and corresponding disorders in which mood and memory are affected. However, it is unclear if repeated activation of cells processing negative memories induces similar phenotypes in mice. In this study, we used an activity-dependent tagging method to access neuronal ensembles and assess their molecular characteristics. Sequencing memory engrams in mice revealed that positive (male-to-female exposure) and negative (foot shock) cells upregulated genes linked to anti- and pro-inflammatory responses, respectively. To investigate the impact of persistent activation of negative engrams, we chemogenetically activated them in the ventral hippocampus over 3 months and conducted anxiety and memory-related tests. Negative engram activation increased anxiety behaviors in both 6- and 14-month-old mice, reduced spatial working memory in older mice, impaired fear extinction in younger mice, and heightened fear generalization in both age groups. Immunohistochemistry revealed changes in microglial and astrocytic structure and number in the hippocampus. In summary, repeated activation of negative memories induces lasting cellular and behavioral abnormalities in mice, offering insights into the negative effects of chronic negative thinking-like behaviors on human health.

    1. Neuroscience
    Alexandra H Leighton, Juliette E Cheyne, Christian Lohmann
    Research Article

    Synaptic inputs to cortical neurons are highly structured in adult sensory systems, such that neighboring synapses along dendrites are activated by similar stimuli. This organization of synaptic inputs, called synaptic clustering, is required for high-fidelity signal processing, and clustered synapses can already be observed before eye opening. However, how clustered inputs emerge during development is unknown. Here, we employed concurrent in vivo whole-cell patch-clamp and dendritic calcium imaging to map spontaneous synaptic inputs to dendrites of layer 2/3 neurons in the mouse primary visual cortex during the second postnatal week until eye opening. We found that the number of functional synapses and the frequency of transmission events increase several fold during this developmental period. At the beginning of the second postnatal week, synapses assemble specifically in confined dendritic segments, whereas other segments are devoid of synapses. By the end of the second postnatal week, just before eye opening, dendrites are almost entirely covered by domains of co-active synapses. Finally, co-activity with their neighbor synapses correlates with synaptic stabilization and potentiation. Thus, clustered synapses form in distinct functional domains presumably to equip dendrites with computational modules for high-capacity sensory processing when the eyes open.