A dual role for Cav1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse

  1. J Wesley Maddox
  2. Kate L Randall
  3. Ravi P Yadav
  4. Brittany Williams
  5. Jussara Hagen
  6. Paul J Derr
  7. Vasily Kerov
  8. Luca Della Santina
  9. Sheila A Baker
  10. Nikolai Artemyev
  11. Mrinalini Hoon
  12. Amy Lee  Is a corresponding author
  1. University of Iowa, United States
  2. University of Wisconsin, Madison, United States
  3. University of California, San Francisco, United States
  4. University of Iowa Carver College of Medicine, United States

Abstract

Synapses are fundamental information processing units that rely on voltage-gated Ca2+ (Cav) channels to trigger Ca2+-dependent neurotransmitter release. Cav channels also play Ca2+-independent roles in other biological contexts, but whether they do so in axon terminals is unknown. Here, we addressed this unknown with respect to the requirement for Cav1.4 L-type channels for the formation of rod photoreceptor synapses in the retina. Using a mouse strain expressing a non-conducting mutant form of Cav1.4, we report that the Cav1.4 protein, but not its Ca2+ conductance, is required for the molecular assembly of rod synapses; however, Cav1.4 Ca2+ signals are needed for the appropriate recruitment of postsynaptic partners. Our results support a model in which presynaptic Cav channels serve both as organizers of synaptic building blocks and as sources of Ca2+ ions in building the first synapse of the visual pathway and perhaps more broadly in the nervous system.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. J Wesley Maddox

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kate L Randall

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ravi P Yadav

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Brittany Williams

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jussara Hagen

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul J Derr

    Neuroscience, University of Wisconsin, Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Vasily Kerov

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Luca Della Santina

    Department of Ophthalmology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Sheila A Baker

    Biochemistry, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Nikolai Artemyev

    Molecular Physiology, University of Iowa Carver College of Medicine, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mrinalini Hoon

    Department of Neuroscience, University of Wisconsin, Madison, Madison, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Amy Lee

    Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    For correspondence
    amy-lee@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8021-0443

Funding

National Eye Institute (EY 026817)

  • Amy Lee

McPherson Eye Research Institute

  • Mrinalini Hoon

Research to Prevent Blindness

  • Mrinalini Hoon

National Eye Institute (EY 029953)

  • J Wesley Maddox

National Eye Institute (EY 026477)

  • Brittany Williams

National Eye Institute (EY010843,EY012682)

  • Nikolai Artemyev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Teresa Giraldez, Universidad de La Laguna, Spain

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#7121262-025) of the University of Iowa. The protocol was approved by the Office of Institutional Animal Care and Use Committee of the University of Iowa (A3021-01).

Version history

  1. Received: August 17, 2020
  2. Accepted: September 9, 2020
  3. Accepted Manuscript published: September 17, 2020 (version 1)
  4. Version of Record published: October 15, 2020 (version 2)

Copyright

© 2020, Maddox et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,038
    views
  • 345
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. J Wesley Maddox
  2. Kate L Randall
  3. Ravi P Yadav
  4. Brittany Williams
  5. Jussara Hagen
  6. Paul J Derr
  7. Vasily Kerov
  8. Luca Della Santina
  9. Sheila A Baker
  10. Nikolai Artemyev
  11. Mrinalini Hoon
  12. Amy Lee
(2020)
A dual role for Cav1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse
eLife 9:e62184.
https://doi.org/10.7554/eLife.62184

Share this article

https://doi.org/10.7554/eLife.62184

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Bohan Zhu, Richard I Ainsworth ... Javier González-Maeso
    Research Article

    Genome-wide association studies have revealed >270 loci associated with schizophrenia risk, yet these genetic factors do not seem to be sufficient to fully explain the molecular determinants behind this psychiatric condition. Epigenetic marks such as post-translational histone modifications remain largely plastic during development and adulthood, allowing a dynamic impact of environmental factors, including antipsychotic medications, on access to genes and regulatory elements. However, few studies so far have profiled cell-specific genome-wide histone modifications in postmortem brain samples from schizophrenia subjects, or the effect of antipsychotic treatment on such epigenetic marks. Here, we conducted ChIP-seq analyses focusing on histone marks indicative of active enhancers (H3K27ac) and active promoters (H3K4me3), alongside RNA-seq, using frontal cortex samples from antipsychotic-free (AF) and antipsychotic-treated (AT) individuals with schizophrenia, as well as individually matched controls (n=58). Schizophrenia subjects exhibited thousands of neuronal and non-neuronal epigenetic differences at regions that included several susceptibility genetic loci, such as NRG1, DISC1, and DRD3. By analyzing the AF and AT cohorts separately, we identified schizophrenia-associated alterations in specific transcription factors, their regulatees, and epigenomic and transcriptomic features that were reversed by antipsychotic treatment; as well as those that represented a consequence of antipsychotic medication rather than a hallmark of schizophrenia in postmortem human brain samples. Notably, we also found that the effect of age on epigenomic landscapes was more pronounced in frontal cortex of AT-schizophrenics, as compared to AF-schizophrenics and controls. Together, these data provide important evidence of epigenetic alterations in the frontal cortex of individuals with schizophrenia, and remark for the first time on the impact of age and antipsychotic treatment on chromatin organization.

    1. Neuroscience
    Aedan Yue Li, Natalia Ladyka-Wojcik ... Morgan Barense
    Research Article

    Combining information from multiple senses is essential to object recognition, core to the ability to learn concepts, make new inferences, and generalize across distinct entities. Yet how the mind combines sensory input into coherent crossmodal representations - the crossmodal binding problem - remains poorly understood. Here, we applied multi-echo fMRI across a four-day paradigm, in which participants learned 3-dimensional crossmodal representations created from well-characterized unimodal visual shape and sound features. Our novel paradigm decoupled the learned crossmodal object representations from their baseline unimodal shapes and sounds, thus allowing us to track the emergence of crossmodal object representations as they were learned by healthy adults. Critically, we found that two anterior temporal lobe structures - temporal pole and perirhinal cortex - differentiated learned from non-learned crossmodal objects, even when controlling for the unimodal features that composed those objects. These results provide evidence for integrated crossmodal object representations in the anterior temporal lobes that were different from the representations for the unimodal features. Furthermore, we found that perirhinal cortex representations were by default biased towards visual shape, but this initial visual bias was attenuated by crossmodal learning. Thus, crossmodal learning transformed perirhinal representations such that they were no longer predominantly grounded in the visual modality, which may be a mechanism by which object concepts gain their abstraction.