A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen

  1. David E Cook  Is a corresponding author
  2. H Martin Kramer
  3. David E Torres
  4. Michael F Seidl
  5. Bart PHJ Thomma  Is a corresponding author
  1. Kansas State University, United States
  2. Wageningen University, Netherlands

Abstract

Genomes store information at scales beyond the linear nucleotide sequence, which impacts genome function at the level of an individual, while influences on populations and long-term genome function remains unclear. Here, we addressed how physical and chemical DNA characteristics influence genome evolution in the plant pathogenic fungus Verticillium dahliae. We identified incomplete DNA methylation of repetitive elements, associated with specific genomic compartments originally defined as Lineage-Specific (LS) regions that contain genes involved in host adaptation. Further chromatin characterization revealed associations with features such as H3 Lys-27 methylated histones (H3K27me3) and accessible DNA. Machine learning trained on chromatin data identified twice as much LS DNA as previously recognized, which was validated through orthogonal analysis, and we propose to refer to this DNA as adaptive genomic regions. Our results provide evidence that specific chromatin profiles define adaptive genomic regions, and highlight how different epigenetic factors contribute to the organization of these regions.

Data availability

The sequencing data for this project are accessible from the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) under BioProject PRJNA592220.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. David E Cook

    Department of Plant Pathology, Kansas State University, Manhattan, United States
    For correspondence
    decook@ksu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2719-4701
  2. H Martin Kramer

    Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. David E Torres

    Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael F Seidl

    Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Bart PHJ Thomma

    Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
    For correspondence
    bart.thomma@wur.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4125-4181

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Michael F Seidl
  • Bart PHJ Thomma

European Molecular Biology Organization (Postdoctoral fellowship EMBO, ALTF 969-2013)

  • David E Cook

Human Frontier Science Program (Postdoctoral Fellowship HFSP, LT000627/2014-L)

  • David E Cook

Deutsche Forschungsgemeinschaft

  • Bart PHJ Thomma

Conacyt

  • David E Torres

United States Department of Agriculture

  • David E Cook

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: August 18, 2020
  2. Accepted: December 17, 2020
  3. Accepted Manuscript published: December 18, 2020 (version 1)
  4. Version of Record published: January 4, 2021 (version 2)

Copyright

© 2020, Cook et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,733
    Page views
  • 284
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David E Cook
  2. H Martin Kramer
  3. David E Torres
  4. Michael F Seidl
  5. Bart PHJ Thomma
(2020)
A unique chromatin profile defines adaptive genomic regions in a fungal plant pathogen
eLife 9:e62208.
https://doi.org/10.7554/eLife.62208

Further reading

    1. Genetics and Genomics
    2. Evolutionary Biology
    Zane Kliesmete, Lucas Esteban Wange ... Wolfgang Enard
    Research Article

    Brain size and cortical folding have increased and decreased recurrently during mammalian evolution. Identifying genetic elements whose sequence or functional properties co-evolve with these traits can provide unique information on evolutionary and developmental mechanisms. A good candidate for such a comparative approach is TRNP1, as it controls proliferation of neural progenitors in mice and ferrets. Here, we investigate the contribution of both regulatory and coding sequences of TRNP1 to brain size and cortical folding in over 30 mammals. We find that the rate of TRNP1 protein evolution (ω) significantly correlates with brain size, slightly less with cortical folding and much less with body size. This brain correlation is stronger than for >95% of random control proteins. This co-evolution is likely affecting TRNP1 activity, as we find that TRNP1 from species with larger brains and more cortical folding induce higher proliferation rates in neural stem cells. Furthermore, we compare the activity of putative cis-regulatory elements (CREs) of TRNP1 in a massively parallel reporter assay and identify one CRE that likely co-evolves with cortical folding in Old World monkeys and apes. Our analyses indicate that coding and regulatory changes that increased TRNP1 activity were positively selected either as a cause or a consequence of increases in brain size and cortical folding. They also provide an example how phylogenetic approaches can inform biological mechanisms, especially when combined with molecular phenotypes across several species.

    1. Developmental Biology
    2. Evolutionary Biology
    Erliang Yuan, Huijuan Guo ... Yucheng Sun
    Research Article

    Wing dimorphism in insects is an evolutionarily adaptive trait to maximize insect fitness under various environments, by which the population could be balanced between dispersing and reproduction. Most studies concern the regulatory mechanisms underlying the stimulation of wing morph in aphids, but relatively little research addresses the molecular basis of wing loss. Here, we found that, while developing normally in winged-destined pea aphids, the wing disc in wingless-destined aphids degenerated 30-hr postbirth and that this degeneration was due to autophagy rather than apoptosis. Activation of autophagy in first instar nymphs reduced the proportion of winged aphids, and suppression of autophagy increased the proportion. REPTOR2, associated with TOR signaling pathway, was identified by RNA-seq as a differentially expressed gene between the two morphs with higher expression in the thorax of wingless-destined aphids. Further genetic analysis indicated that REPTOR2 could be a novel gene derived from a gene duplication event that occurred exclusively in pea aphids on autosome A1 but translocated to the sex chromosome. Knockdown of REPTOR2 reduced autophagy in the wing disc and increased the proportion of winged aphids. In agreement with REPTOR’s canonical negative regulatory role of TOR on autophagy, winged-destined aphids had higher TOR expression in the wing disc. Suppression of TOR activated autophagy of the wing disc and decreased the proportion of winged aphids, and vice versa. Co-suppression of TOR and REPTOR2 showed that dsREPTOR2 could mask the positive effect of dsTOR on autophagy, suggesting that REPTOR2 acted as a key regulator downstream of TOR in the signaling pathway. These results revealed that the TOR signaling pathway suppressed autophagic degradation of the wing disc in pea aphids by negatively regulating the expression of REPTOR2.