Age-related changes in Polycomb gene regulation disrupt lineage fidelity in intestinal stem cells

  1. Helen M Tauc
  2. Imilce A Rodriguez-Fernandez
  3. Jason A Hackney
  4. Michal Pawlak
  5. Tal Ronnen Oron
  6. Jerome Korzelius
  7. Hagar F Moussa
  8. Subhra Chaudhuri
  9. Zora Modrusan
  10. Bruce A Edgar
  11. Heinrich Jasper  Is a corresponding author
  1. Genentech, Inc, United States
  2. Institute of Hematology and Blood Transfusion, Poland
  3. Buck Institute for Research on Aging, United States
  4. University of Kent, United Kingdom
  5. Vienna BioCenter (VBC), Austria
  6. University of Utah, United States

Abstract

Tissue homeostasis requires long-term lineage fidelity of somatic stem cells. Whether and how age-related changes in somatic stem cells impact the faithful execution of lineage decisions remains largely unknown. Here, we address this question using genome-wide chromatin accessibility and transcriptome analysis as well as single cell RNA-seq to explore stem cell-intrinsic changes in the aging Drosophila intestine. These studies indicate that in stem cells of old flies, promoters of Polycomb (Pc) target genes become differentially accessible, resulting in the increased expression of enteroendocrine (EE) cell specification genes. Consistently, we find age-related changes in the composition of the EE progenitor cell population in aging intestines, as well as a significant increase in the proportion of EE-specified intestinal stem cells (ISCs) and progenitors in aging flies. We further confirm that Pc-mediated chromatin regulation is a critical determinant of EE cell specification in the Drosophila intestine. Pc is required to maintain expression of stem cell genes while ensuring repression of differentiation and specification genes. Our results identify Pc group proteins as central regulators of lineage identity in the intestinal epithelium and highlight the impact of age-related decline in chromatin regulation on tissue homeostasis.

Data availability

Data generated and analysed are included in the manuscript, figures and figure supplements.All sequencing data generated in this study have been deposited in GEO under accession code GSE164317.

Article and author information

Author details

  1. Helen M Tauc

    Immunology Discovery, Genentech, Inc, South San Francisco, United States
    Competing interests
    Helen M Tauc, employee of Genentech Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0694-2387
  2. Imilce A Rodriguez-Fernandez

    Immunology Discovery, Genentech, Inc, South San Francisco, United States
    Competing interests
    Imilce A Rodriguez-Fernandez, employee of Genentech Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5112-4834
  3. Jason A Hackney

    Bioinformatics, Genentech, Inc, South San Francisco, United States
    Competing interests
    Jason A Hackney, employee of Genentech Inc.
  4. Michal Pawlak

    Bioinformatics, Institute of Hematology and Blood Transfusion, Warsaw, Poland
    Competing interests
    No competing interests declared.
  5. Tal Ronnen Oron

    Bioinformatics, Buck Institute for Research on Aging, Novato, United States
    Competing interests
    No competing interests declared.
  6. Jerome Korzelius

    School of Biosciences, University of Kent, Canterbury, United Kingdom
    Competing interests
    No competing interests declared.
  7. Hagar F Moussa

    Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3463-0126
  8. Subhra Chaudhuri

    Micro Array Lab, Genentech, Inc, South San Francisco, United States
    Competing interests
    Subhra Chaudhuri, employee of Genentech Inc.
  9. Zora Modrusan

    Microchemistry, Proteomics and Lipidomics, Genentech, Inc, South San Francisco, United States
    Competing interests
    Zora Modrusan, employee of Genentech Inc.
  10. Bruce A Edgar

    Department of Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3383-2044
  11. Heinrich Jasper

    Immunology Discovery, Genentech, Inc, South San Francisco, United States
    For correspondence
    jasper.heinrich@gene.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6014-4343

Funding

EMBO Long-Term Fellowship (ALTF 1516-2011)

  • Jerome Korzelius

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Tauc et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,576
    views
  • 563
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen M Tauc
  2. Imilce A Rodriguez-Fernandez
  3. Jason A Hackney
  4. Michal Pawlak
  5. Tal Ronnen Oron
  6. Jerome Korzelius
  7. Hagar F Moussa
  8. Subhra Chaudhuri
  9. Zora Modrusan
  10. Bruce A Edgar
  11. Heinrich Jasper
(2021)
Age-related changes in Polycomb gene regulation disrupt lineage fidelity in intestinal stem cells
eLife 10:e62250.
https://doi.org/10.7554/eLife.62250

Share this article

https://doi.org/10.7554/eLife.62250

Further reading

    1. Genetics and Genomics
    Jongkeun Park, WonJong Choi ... Dongwan Hong
    Research Article

    An unprecedented amount of SARS-CoV-2 data has been accumulated compared with previous infectious diseases, enabling insights into its evolutionary process and more thorough analyses. This study investigates SARS-CoV-2 features as it evolved to evaluate its infectivity. We examined viral sequences and identified the polarity of amino acids in the receptor binding motif (RBM) region. We detected an increased frequency of amino acid substitutions to lysine (K) and arginine (R) in variants of concern (VOCs). As the virus evolved to Omicron, commonly occurring mutations became fixed components of the new viral sequence. Furthermore, at specific positions of VOCs, only one type of amino acid substitution and a notable absence of mutations at D467 were detected. We found that the binding affinity of SARS-CoV-2 lineages to the ACE2 receptor was impacted by amino acid substitutions. Based on our discoveries, we developed APESS, an evaluation model evaluating infectivity from biochemical and mutational properties. In silico evaluation using real-world sequences and in vitro viral entry assays validated the accuracy of APESS and our discoveries. Using Machine Learning, we predicted mutations that had the potential to become more prominent. We created AIVE, a web-based system, accessible at https://ai-ve.org to provide infectivity measurements of mutations entered by users. Ultimately, we established a clear link between specific viral properties and increased infectivity, enhancing our understanding of SARS-CoV-2 and enabling more accurate predictions of the virus.

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.