1. Computational and Systems Biology
Download icon

Mouse aging cell atlas analysis reveals global and cell type specific aging signatures

  1. Martin Jinye Zhang  Is a corresponding author
  2. Angela O Pisco  Is a corresponding author
  3. Spyros Darmanis
  4. James Zou  Is a corresponding author
  1. Harvard University, United States
  2. Chan-Zuckerberg Biohub, United States
  3. Stanford University, United States
Research Article
  • Cited 0
  • Views 2,864
  • Annotations
Cite this article as: eLife 2021;10:e62293 doi: 10.7554/eLife.62293

Abstract

Aging is associated with complex molecular and cellular processes that are poorly understood. Here we leveraged the Tabula Muris Senis single-cell RNA-seq dataset to systematically characterize gene expression changes during aging across diverse cell types in the mouse. We identified aging-dependent genes in 76 tissue-cell types from 23 tissues and characterized both shared and tissue-cell-specific aging behaviors. We found that the aging-related genes shared by multiple tissue-cell types also change their expression congruently in the same direction during aging in most tissue-cell types, suggesting a coordinated global aging behavior at the organismal level. Scoring cells based on these shared aging genes allowed us to contrast the aging status of different tissues and cell types from a transcriptomic perspective. In addition, we identified genes that exhibit age-related expression changes specific to each functional category of tissue-cell types. Altogether, our analyses provide one of the most comprehensive and systematic characterizations of the molecular signatures of aging across diverse tissue-cell types in a mammalian system.

Data availability

All data can be downloaded at https://figshare.com/articles/dataset/tms_gene_data_rv1/12827615.

The following previously published data sets were used

Article and author information

Author details

  1. Martin Jinye Zhang

    Epidemiology, Harvard University, Boston, United States
    For correspondence
    jinyezhang@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0006-2466
  2. Angela O Pisco

    Data Science, Chan-Zuckerberg Biohub, San Francisco, United States
    For correspondence
    angela.pisco@czbiohub.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0142-2355
  3. Spyros Darmanis

    Data Science, Chan-Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James Zou

    Biomedical Data Science, Stanford University, Stanford, United States
    For correspondence
    jamesyzou@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8880-4764

Funding

Chan-Zuckberg Biohub

  • James Zou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jing-Dong Jackie Han, Chinese Academy of Sciences, China

Publication history

  1. Received: August 20, 2020
  2. Accepted: March 29, 2021
  3. Accepted Manuscript published: April 13, 2021 (version 1)
  4. Version of Record published: April 14, 2021 (version 2)

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,864
    Page views
  • 394
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Emanuel Cura Costa et al.
    Research Advance

    Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modelling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830mm of the injury. We adapted FUCCI technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.

    1. Computational and Systems Biology
    2. Stem Cells and Regenerative Medicine
    Zachary Clemens et al.
    Research Article Updated

    Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing ‘disorderliness’ of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular ‘order’ and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.