Mouse aging cell atlas analysis reveals global and cell type specific aging signatures

  1. Martin Jinye Zhang  Is a corresponding author
  2. Angela O Pisco  Is a corresponding author
  3. Spyros Darmanis
  4. James Zou  Is a corresponding author
  1. Harvard University, United States
  2. Chan-Zuckerberg Biohub, United States
  3. Stanford University, United States

Abstract

Aging is associated with complex molecular and cellular processes that are poorly understood. Here we leveraged the Tabula Muris Senis single-cell RNA-seq dataset to systematically characterize gene expression changes during aging across diverse cell types in the mouse. We identified aging-dependent genes in 76 tissue-cell types from 23 tissues and characterized both shared and tissue-cell-specific aging behaviors. We found that the aging-related genes shared by multiple tissue-cell types also change their expression congruently in the same direction during aging in most tissue-cell types, suggesting a coordinated global aging behavior at the organismal level. Scoring cells based on these shared aging genes allowed us to contrast the aging status of different tissues and cell types from a transcriptomic perspective. In addition, we identified genes that exhibit age-related expression changes specific to each functional category of tissue-cell types. Altogether, our analyses provide one of the most comprehensive and systematic characterizations of the molecular signatures of aging across diverse tissue-cell types in a mammalian system.

Data availability

All data can be downloaded at https://figshare.com/articles/dataset/tms_gene_data_rv1/12827615.

The following previously published data sets were used

Article and author information

Author details

  1. Martin Jinye Zhang

    Epidemiology, Harvard University, Boston, United States
    For correspondence
    jinyezhang@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0006-2466
  2. Angela O Pisco

    Data Science, Chan-Zuckerberg Biohub, San Francisco, United States
    For correspondence
    angela.pisco@czbiohub.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0142-2355
  3. Spyros Darmanis

    Data Science, Chan-Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James Zou

    Biomedical Data Science, Stanford University, Stanford, United States
    For correspondence
    jamesyzou@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8880-4764

Funding

Chan-Zuckberg Biohub

  • James Zou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jing-Dong Jackie Han, Chinese Academy of Sciences, China

Version history

  1. Received: August 20, 2020
  2. Accepted: March 29, 2021
  3. Accepted Manuscript published: April 13, 2021 (version 1)
  4. Version of Record published: April 14, 2021 (version 2)

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,923
    Page views
  • 1,554
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Jinye Zhang
  2. Angela O Pisco
  3. Spyros Darmanis
  4. James Zou
(2021)
Mouse aging cell atlas analysis reveals global and cell type specific aging signatures
eLife 10:e62293.
https://doi.org/10.7554/eLife.62293

Further reading

    1. Computational and Systems Biology
    Louis Gall, Carrie Duckworth ... Carmen Pin
    Research Article

    The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43 and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation and migration and leads to loss of barrier integrity. During recovery, our in-silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.

    1. Computational and Systems Biology
    Arya Mani
    Insight

    A deep analysis of multiple genomic datasets reveals which genetic pathways associated with atherosclerosis and coronary artery disease are shared between mice and humans.