Mouse aging cell atlas analysis reveals global and cell type specific aging signatures

  1. Martin Jinye Zhang  Is a corresponding author
  2. Angela O Pisco  Is a corresponding author
  3. Spyros Darmanis
  4. James Zou  Is a corresponding author
  1. Harvard University, United States
  2. Chan-Zuckerberg Biohub, United States
  3. Stanford University, United States

Abstract

Aging is associated with complex molecular and cellular processes that are poorly understood. Here we leveraged the Tabula Muris Senis single-cell RNA-seq dataset to systematically characterize gene expression changes during aging across diverse cell types in the mouse. We identified aging-dependent genes in 76 tissue-cell types from 23 tissues and characterized both shared and tissue-cell-specific aging behaviors. We found that the aging-related genes shared by multiple tissue-cell types also change their expression congruently in the same direction during aging in most tissue-cell types, suggesting a coordinated global aging behavior at the organismal level. Scoring cells based on these shared aging genes allowed us to contrast the aging status of different tissues and cell types from a transcriptomic perspective. In addition, we identified genes that exhibit age-related expression changes specific to each functional category of tissue-cell types. Altogether, our analyses provide one of the most comprehensive and systematic characterizations of the molecular signatures of aging across diverse tissue-cell types in a mammalian system.

Data availability

All data can be downloaded at https://figshare.com/articles/dataset/tms_gene_data_rv1/12827615.

The following previously published data sets were used

Article and author information

Author details

  1. Martin Jinye Zhang

    Epidemiology, Harvard University, Boston, United States
    For correspondence
    jinyezhang@hsph.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0006-2466
  2. Angela O Pisco

    Data Science, Chan-Zuckerberg Biohub, San Francisco, United States
    For correspondence
    angela.pisco@czbiohub.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0142-2355
  3. Spyros Darmanis

    Data Science, Chan-Zuckerberg Biohub, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James Zou

    Biomedical Data Science, Stanford University, Stanford, United States
    For correspondence
    jamesyzou@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8880-4764

Funding

Chan-Zuckberg Biohub

  • James Zou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jing-Dong Jackie Han, Chinese Academy of Sciences, China

Publication history

  1. Received: August 20, 2020
  2. Accepted: March 29, 2021
  3. Accepted Manuscript published: April 13, 2021 (version 1)
  4. Version of Record published: April 14, 2021 (version 2)

Copyright

© 2021, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,496
    Page views
  • 1,440
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Jinye Zhang
  2. Angela O Pisco
  3. Spyros Darmanis
  4. James Zou
(2021)
Mouse aging cell atlas analysis reveals global and cell type specific aging signatures
eLife 10:e62293.
https://doi.org/10.7554/eLife.62293

Further reading

    1. Computational and Systems Biology
    Swann Floc'hlay, Ramya Balaji ... Stein Aerts
    Research Article Updated

    Wound response programs are often activated during neoplastic growth in tumors. In both wound repair and tumor growth, cells respond to acute stress and balance the activation of multiple programs, including apoptosis, proliferation, and cell migration. Central to those responses are the activation of the JNK/MAPK and JAK/STAT signaling pathways. Yet, to what extent these signaling cascades interact at the cis-regulatory level and how they orchestrate different regulatory and phenotypic responses is still unclear. Here, we aim to characterize the regulatory states that emerge and cooperate in the wound response, using the Drosophila melanogaster wing disc as a model system, and compare these with cancer cell states induced by rasV12scrib-/- in the eye disc. We used single-cell multiome profiling to derive enhancer gene regulatory networks (eGRNs) by integrating chromatin accessibility and gene expression signals. We identify a ‘proliferative’ eGRN, active in the majority of wounded cells and controlled by AP-1 and STAT. In a smaller, but distinct population of wound cells, a ‘senescent’ eGRN is activated and driven by C/EBP-like transcription factors (Irbp18, Xrp1, Slow border, and Vrille) and Scalloped. These two eGRN signatures are found to be active in tumor cells at both gene expression and chromatin accessibility levels. Our single-cell multiome and eGRNs resource offers an in-depth characterization of the senescence markers, together with a new perspective on the shared gene regulatory programs acting during wound response and oncogenesis.

    1. Cancer Biology
    2. Computational and Systems Biology
    Xiangkun Wu, Hong Yan ... Li Liang
    Research Article

    Colorectal cancer (CRC) remains a challenging and deadly disease with high tumor microenvironment (TME) heterogeneity. Using an integrative multi-omics analysis and artificial intelligence-enabled spatial analysis of whole-slide images, we performed a comprehensive characterization of TME in colorectal cancer (CCCRC). CRC samples were classified into four CCCRC subtypes with distinct TME features, namely, C1 as the proliferative subtype with low immunogenicity; C2 as the immunosuppressed subtype with the terminally exhausted immune characteristics; C3 as the immune-excluded subtype with the distinct upregulation of stromal components and a lack of T cell infiltration in the tumor core; and C4 as the immunomodulatory subtype with the remarkable upregulation of anti-tumor immune components. The four CCCRC subtypes had distinct histopathologic and molecular characteristics, therapeutic efficacy, and prognosis. We found that the C1 subtype may be suitable for chemotherapy and cetuximab, the C2 subtype may benefit from a combination of chemotherapy and bevacizumab, the C3 subtype has increased sensitivity to the WNT pathway inhibitor WIKI4, and the C4 subtype is a potential candidate for immune checkpoint blockade treatment. Importantly, we established a simple gene classifier for accurate identification of each CCCRC subtype. Collectively our integrative analysis ultimately established a holistic framework to thoroughly dissect the TME of CRC, and the CCCRC classification system with high biological interpretability may contribute to biomarker discovery and future clinical trial design.