1. Cell Biology
  2. Developmental Biology
Download icon

Negative feedback couples Hippo pathway activation with Kibra degradation independent of Yorkie-mediated transcription

  1. Sherzod A Tokamov
  2. Ting Su
  3. Anne Ullyot
  4. Richard G Fehon  Is a corresponding author
  1. University of Chicago, United States
  2. UT Southwestern Medical Center, United States
Research Article
  • Cited 0
  • Views 1,038
  • Annotations
Cite this article as: eLife 2021;10:e62326 doi: 10.7554/eLife.62326

Abstract

The Hippo pathway regulates tissue growth in many animals. Multiple upstream components promote Hippo pathway activity, but the organization of these different inputs, the degree of crosstalk between them, and whether they are regulated in a distinct manner is not well understood. Kibra activates the Hippo pathway by recruiting the core Hippo kinase cassette to the apical cortex. Here we show that the Hippo pathway downregulates Drosophila Kibra levels independently of Yorkie-mediated transcription. We find that Hippo signaling complex formation promotes Kibra degradation via SCFSlimb-mediated ubiquitination, that this effect requires Merlin, Salvador, Hippo, and Warts, and that this mechanism functions independently of other upstream Hippo pathway activators. Moreover, Kibra degradation appears patterned by differences in mechanical tension across the wing. We propose that Kibra degradation mediated by Hippo pathway components and regulated by cytoskeletal tension serves to control Kibra-driven Hippo pathway activation and ensure optimally scaled and patterned tissue growth.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sherzod A Tokamov

    Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ting Su

    Department of Physiology, UT Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1124-517X
  3. Anne Ullyot

    Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard G Fehon

    Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
    For correspondence
    rfehon@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4889-2602

Funding

National Institute of Neurological Disorders and Stroke (NS034783)

  • Richard G Fehon

National Institute of General Medical Sciences (T32 GM007183)

  • Sherzod A Tokamov

National Science Foundation (Graduate Research Fellowship)

  • Sherzod A Tokamov

S. A. T. conceptualized the project, performed most of the experiments and data collection, and wrote the manuscript. R. G. F. conceptualized supervised all aspects of the project, and helped writing the manuscript. Both S. A. T. and R. G. F. agreed to submit the work for publication.

Reviewing Editor

  1. Elisabeth Knust, Max-Planck Institute of Molecular Cell Biology and Genetics, Germany

Publication history

  1. Received: August 21, 2020
  2. Accepted: February 8, 2021
  3. Accepted Manuscript published: February 8, 2021 (version 1)
  4. Version of Record published: February 19, 2021 (version 2)

Copyright

© 2021, Tokamov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,038
    Page views
  • 218
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Developmental Biology
    Shaun Abrams, Jeremy F Reiter
    Research Article

    Craniofacial defects are among the most common phenotypes caused by ciliopathies, yet the developmental and molecular etiology of these defects is poorly understood. We investigated multiple mouse models of human ciliopathies (including Tctn2, Cc2d2a and Tmem231 mutants) and discovered that each displays hypotelorism, a narrowing of the midface. As early in development as the end of gastrulation, Tctn2 mutants displayed reduced activation of the Hedgehog (HH) pathway in the prechordal plate, the head organizer. This prechordal plate defect preceded a reduction of HH pathway activation and Shh expression in the adjacent neurectoderm. Concomitant with the reduction of HH pathway activity, Tctn2 mutants exhibited increased cell death in the neurectoderm and facial ectoderm, culminating in a collapse of the facial midline. Enhancing HH signaling by decreasing the gene dosage of a negative regulator of the pathway, Ptch1, decreased cell death and rescued the midface defect in both Tctn2 and Cc2d2a mutants. These results reveal that ciliary HH signaling mediates communication between the prechordal plate and the neurectoderm to provide cellular survival cues essential for development of the facial midline.

    1. Cell Biology
    2. Developmental Biology
    Lianna W Wat et al.
    Research Article

    Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.