1. Neuroscience
Download icon

Exposing distinct subcortical components of the auditory brainstem response evoked by continuous naturalistic speech

  1. Melissa J Polonenko
  2. Ross K Maddox  Is a corresponding author
  1. University of Rochester, United States
Tools and Resources
  • Cited 0
  • Views 853
  • Annotations
Cite this article as: eLife 2021;10:e62329 doi: 10.7554/eLife.62329

Abstract

Speech processing is built upon encoding by the auditory nerve and brainstem, yet we know very little about how these processes unfold in specific subcortical structures. These structures are deep and respond quickly, making them difficult to study during ongoing speech. Recent techniques begin to address this problem, but yield temporally broad responses with consequently ambiguous neural origins. Here we describe a method that pairs re-synthesized 'peaky' speech with deconvolution analysis of EEG recordings. We show that in adults with normal hearing, the method quickly yields robust responses whose component waves reflect activity from distinct subcortical structures spanning auditory nerve to rostral brainstem. We further demonstrate the versatility of peaky speech by simultaneously measuring bilateral and ear-specific responses across different frequency bands, and discuss important practical considerations such as talker choice. The peaky speech method holds promise as a tool for investigating speech encoding and processing, and for clinical applications.

Data availability

Python code is available on the lab GitHub account (https://github.com/maddoxlab/peaky-speech). All EEG recordings are posted in the EEG-BIDS format (Pernet et al., 2019) to Dryad (https://doi.org/10.5061/dryad.12jm63xwd). Stimulus files necessary to derive the peaky speech responses are deposited in the same Dryad repository.

The following data sets were generated

Article and author information

Author details

  1. Melissa J Polonenko

    Neuroscience, University of Rochester, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1914-6117
  2. Ross K Maddox

    Neuroscience, Biomedical Engineering, University of Rochester, Rochester, United States
    For correspondence
    ross.maddox@rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2668-0238

Funding

National Institute on Deafness and Other Communication Disorders (R00DC014288)

  • Ross K Maddox

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects gave written informed consent before the experiment began. All experimental procedures were approved by the University of Rochester Research Subjects Review Board. (#1227).

Reviewing Editor

  1. Tobias Reichenbach, Imperial College London, United Kingdom

Publication history

  1. Received: August 21, 2020
  2. Accepted: February 16, 2021
  3. Accepted Manuscript published: February 17, 2021 (version 1)
  4. Version of Record published: March 10, 2021 (version 2)

Copyright

© 2021, Polonenko & Maddox

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 853
    Page views
  • 117
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Zhengchao Xu et al.
    Tools and Resources Updated

    The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.

    1. Neuroscience
    Shankar Ramachandran et al.
    Research Article Updated

    Neuromodulators promote adaptive behaviors that are often complex and involve concerted activity changes across circuits that are often not physically connected. It is not well understood how neuromodulatory systems accomplish these tasks. Here, we show that the Caenorhabditis elegans NLP-12 neuropeptide system shapes responses to food availability by modulating the activity of head and body wall motor neurons through alternate G-protein coupled receptor (GPCR) targets, CKR-1 and CKR-2. We show ckr-2 deletion reduces body bend depth during movement under basal conditions. We demonstrate CKR-1 is a functional NLP-12 receptor and define its expression in the nervous system. In contrast to basal locomotion, biased CKR-1 GPCR stimulation of head motor neurons promotes turning during local searching. Deletion of ckr-1 reduces head neuron activity and diminishes turning while specific ckr-1 overexpression or head neuron activation promote turning. Thus, our studies suggest locomotor responses to changing food availability are regulated through conditional NLP-12 stimulation of head or body wall motor circuits.