A large accessory protein interactome is rewired across environments

  1. Zhimin Liu
  2. Darach Miller
  3. Fangfei Li
  4. Xianan Liu
  5. Sasha F Levy  Is a corresponding author
  1. Stony Brook University, United States
  2. Stanford University, United States
  3. SLAC National Accelerator Laboratory, United States [US]

Abstract

To characterize how protein-protein interaction (PPI) networks change, we quantified the relative PPI abundance of 1.6 million protein pairs in the yeast Saccharomyces cerevisiae across 9 growth conditions, with replication, for a total of 44 million measurements. Our multi-condition screen identified 13,764 pairwise PPIs, a 3-fold increase over PPIs identified in one condition. A few 'immutable' PPIs are present across all conditions, while most 'mutable' PPIs are rarely observed. Immutable PPIs aggregate into highly connected 'core' network modules, with most network remodeling occurring within a loosely connected 'accessory' module. Mutable PPIs are less likely to co-express, co-localize, and be explained by simple mass action kinetics, and more likely to contain proteins with intrinsically disordered regions, implying that environment-dependent association and binding is critical to cellular adaptation. Our results show that protein interactomes are larger than previously thought and contain highly dynamic regions that reorganize to drive or respond to cellular changes.

Data availability

Raw barcode sequencing data are available from the NIH Sequence Read Archive as accession PRJNA630095 (https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP259652). Barcode sequences, counts, fitness values, and PPI calls are available in the Supplementary Tables (https://osf.io/jmhrb/). Additional data to make figures are available in Mendeley data (https://data.mendeley.com/datasets/9ygwhk5cs3/2) and Open Science Framework (https://osf.io/7yt59/) as detailed in code repository README files. Analysis scripts are written in R and Python. All code used to analyze data, perform statistical analyses, and generate figures is available at Github (https://github.com/sashaflevy/PPiSeq).

The following data sets were generated

Article and author information

Author details

  1. Zhimin Liu

    Department of Biochemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9333-8101
  2. Darach Miller

    Department of Genetics, Stanford University, Palo Alto, United States
    Competing interests
    No competing interests declared.
  3. Fangfei Li

    Department of Applied Mathematics and Statistics, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
  4. Xianan Liu

    Department of Biochemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    Xianan Liu, S.F.L. and X.L have filed a patent application (WO2017075529A1) on the double barcoding platform used in this manuscript..
  5. Sasha F Levy

    Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, United States [US]
    For correspondence
    sflevy@stanford.edu
    Competing interests
    Sasha F Levy, S.F.L. and X.L have filed a patent application (WO2017075529A1) on the double barcoding platform used in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0923-1636

Funding

National Institutes of Health (R01HG008354)

  • Sasha F Levy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian R Landry, Université Laval, Canada

Publication history

  1. Received: August 21, 2020
  2. Accepted: September 4, 2020
  3. Accepted Manuscript published: September 14, 2020 (version 1)
  4. Version of Record published: October 21, 2020 (version 2)

Copyright

© 2020, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,677
    Page views
  • 311
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhimin Liu
  2. Darach Miller
  3. Fangfei Li
  4. Xianan Liu
  5. Sasha F Levy
(2020)
A large accessory protein interactome is rewired across environments
eLife 9:e62365.
https://doi.org/10.7554/eLife.62365
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Feng Xian, Julia Regina Sondermann ... Manuela Schmidt
    Tools and Resources

    The age and sex of studied animals profoundly impact experimental outcomes in biomedical research. However, most preclinical studies in mice use a wide-spanning age range from 4 to 20 weeks and do not assess male and female mice in parallel. This raises concerns regarding reproducibility and neglects potentially relevant age and sex differences, which are largely unknown at the molecular level in naïve mice. Here, we employed an optimized quantitative proteomics workflow in order to deeply profile mouse paw skin and sciatic nerves (SCN) – two tissues implicated in nociception and pain as well as diseases linked to inflammation, injury, and demyelination. Remarkably, we uncovered significant differences when comparing male and female mice at adolescent (4 weeks) and adult (14 weeks) age. Our analysis deciphered protein subsets and networks that were correlated with the age and/or sex of mice. Notably, among these were proteins/biological pathways with known (patho)physiological relevance, e.g., homeostasis and epidermal signaling in skin, and, in SCN, multiple myelin proteins and regulators of neuronal development. Extensive comparisons with available databases revealed that various proteins associated with distinct skin diseases and pain exhibited significant abundance changes in dependence on age and/or sex. Taken together, our study uncovers hitherto unknown sex and age differences at the level of proteins and protein networks. Overall, we provide a unique proteome resource that facilitates mechanistic insights into somatosensory and skin biology, and integrates age and sex as biological variables – a prerequisite for successful preclinical studies in mouse disease models.

    1. Cancer Biology
    2. Computational and Systems Biology
    Deeptiman Chatterjee, Caique Almeida Machado Costa ... Wu-Min Deng
    Research Article Updated

    Apicobasal cell polarity loss is a founding event in epithelial–mesenchymal transition and epithelial tumorigenesis, yet how pathological polarity loss links to plasticity remains largely unknown. To understand the mechanisms and mediators regulating plasticity upon polarity loss, we performed single-cell RNA sequencing of Drosophila ovaries, where inducing polarity-gene l(2)gl-knockdown (Lgl-KD) causes invasive multilayering of the follicular epithelia. Analyzing the integrated Lgl-KD and wildtype transcriptomes, we discovered the cells specific to the various discernible phenotypes and characterized the underlying gene expression. A genetic requirement of Keap1-Nrf2 signaling in promoting multilayer formation of Lgl-KD cells was further identified. Ectopic expression of Keap1 increased the volume of delaminated follicle cells that showed enhanced invasive behavior with significant changes to the cytoskeleton. Overall, our findings describe the comprehensive transcriptome of cells within the follicle cell tumor model at the single-cell resolution and identify a previously unappreciated link between Keap1-Nrf2 signaling and cell plasticity at early tumorigenesis.