A large accessory protein interactome is rewired across environments

  1. Zhimin Liu
  2. Darach Miller
  3. Fangfei Li
  4. Xianan Liu
  5. Sasha F Levy  Is a corresponding author
  1. Stony Brook University, United States
  2. Stanford University, United States
  3. SLAC National Accelerator Laboratory, United States [US]

Abstract

To characterize how protein-protein interaction (PPI) networks change, we quantified the relative PPI abundance of 1.6 million protein pairs in the yeast Saccharomyces cerevisiae across 9 growth conditions, with replication, for a total of 44 million measurements. Our multi-condition screen identified 13,764 pairwise PPIs, a 3-fold increase over PPIs identified in one condition. A few 'immutable' PPIs are present across all conditions, while most 'mutable' PPIs are rarely observed. Immutable PPIs aggregate into highly connected 'core' network modules, with most network remodeling occurring within a loosely connected 'accessory' module. Mutable PPIs are less likely to co-express, co-localize, and be explained by simple mass action kinetics, and more likely to contain proteins with intrinsically disordered regions, implying that environment-dependent association and binding is critical to cellular adaptation. Our results show that protein interactomes are larger than previously thought and contain highly dynamic regions that reorganize to drive or respond to cellular changes.

Data availability

Raw barcode sequencing data are available from the NIH Sequence Read Archive as accession PRJNA630095 (https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP259652). Barcode sequences, counts, fitness values, and PPI calls are available in the Supplementary Tables (https://osf.io/jmhrb/). Additional data to make figures are available in Mendeley data (https://data.mendeley.com/datasets/9ygwhk5cs3/2) and Open Science Framework (https://osf.io/7yt59/) as detailed in code repository README files. Analysis scripts are written in R and Python. All code used to analyze data, perform statistical analyses, and generate figures is available at Github (https://github.com/sashaflevy/PPiSeq).

The following data sets were generated

Article and author information

Author details

  1. Zhimin Liu

    Department of Biochemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9333-8101
  2. Darach Miller

    Department of Genetics, Stanford University, Palo Alto, United States
    Competing interests
    No competing interests declared.
  3. Fangfei Li

    Department of Applied Mathematics and Statistics, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
  4. Xianan Liu

    Department of Biochemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    Xianan Liu, S.F.L. and X.L have filed a patent application (WO2017075529A1) on the double barcoding platform used in this manuscript..
  5. Sasha F Levy

    Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, United States [US]
    For correspondence
    sflevy@stanford.edu
    Competing interests
    Sasha F Levy, S.F.L. and X.L have filed a patent application (WO2017075529A1) on the double barcoding platform used in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0923-1636

Funding

National Institutes of Health (R01HG008354)

  • Sasha F Levy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Christian R Landry, Université Laval, Canada

Publication history

  1. Received: August 21, 2020
  2. Accepted: September 4, 2020
  3. Accepted Manuscript published: September 14, 2020 (version 1)
  4. Version of Record published: October 21, 2020 (version 2)

Copyright

© 2020, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,574
    Page views
  • 294
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhimin Liu
  2. Darach Miller
  3. Fangfei Li
  4. Xianan Liu
  5. Sasha F Levy
(2020)
A large accessory protein interactome is rewired across environments
eLife 9:e62365.
https://doi.org/10.7554/eLife.62365

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Théo Aspert et al.
    Tools and Resources

    Automating the extraction of meaningful temporal information from sequences of microscopy images represents a major challenge to characterize dynamical biological processes. So far, strong limitations in the ability to quantitatively analyze single-cell trajectories have prevented large-scale investigations to assess the dynamics of entry into replicative senescence in yeast. Here, we have developed DetecDiv, a microfluidic-based image acquisition platform combined with deep learning-based software for high-throughput single-cell division tracking. We show that DetecDiv can automatically reconstruct cellular replicative lifespans with high accuracy and performs similarly with various imaging platforms and geometries of microfluidic traps. In addition, this methodology provides comprehensive temporal cellular metrics using time-series classification and image semantic segmentation. Last, we show that this method can be further applied to automatically quantify the dynamics of cellular adaptation and real-time cell survival upon exposure to environmental stress. Hence, this methodology provides an all-in-one toolbox for high-throughput phenotyping for cell cycle, stress response, and replicative lifespan assays.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Mark A Zaydman et al.
    Research Article

    Cellular behaviors emerge from layers of molecular interactions: proteins interact to form complexes, pathways, and phenotypes. We show that hierarchical networks of protein interactions can be defined from the statistical pattern of proteome variation measured across thousands of diverse bacteria and that these networks reflect the emergence of complex bacterial phenotypes. Our results are validated through gene-set enrichment analysis and comparison to existing experimentally-derived databases. We demonstrate the biological utility of our approach by creating a model of motility in Pseudomonas aeruginosa and using it to identify a protein that affects pilus-mediated motility. Our method, SCALES (Spectral Correlation Analysis of Layered Evolutionary Signals), may be useful for interrogating genotype-phenotype relationships in bacteria.