A large accessory protein interactome is rewired across environments

  1. Zhimin Liu
  2. Darach Miller
  3. Fangfei Li
  4. Xianan Liu
  5. Sasha F Levy  Is a corresponding author
  1. Stony Brook University, United States
  2. Stanford University, United States
  3. SLAC National Accelerator Laboratory, United States [US]

Abstract

To characterize how protein-protein interaction (PPI) networks change, we quantified the relative PPI abundance of 1.6 million protein pairs in the yeast Saccharomyces cerevisiae across 9 growth conditions, with replication, for a total of 44 million measurements. Our multi-condition screen identified 13,764 pairwise PPIs, a 3-fold increase over PPIs identified in one condition. A few 'immutable' PPIs are present across all conditions, while most 'mutable' PPIs are rarely observed. Immutable PPIs aggregate into highly connected 'core' network modules, with most network remodeling occurring within a loosely connected 'accessory' module. Mutable PPIs are less likely to co-express, co-localize, and be explained by simple mass action kinetics, and more likely to contain proteins with intrinsically disordered regions, implying that environment-dependent association and binding is critical to cellular adaptation. Our results show that protein interactomes are larger than previously thought and contain highly dynamic regions that reorganize to drive or respond to cellular changes.

Data availability

Raw barcode sequencing data are available from the NIH Sequence Read Archive as accession PRJNA630095 (https://trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP259652). Barcode sequences, counts, fitness values, and PPI calls are available in the Supplementary Tables (https://osf.io/jmhrb/). Additional data to make figures are available in Mendeley data (https://data.mendeley.com/datasets/9ygwhk5cs3/2) and Open Science Framework (https://osf.io/7yt59/) as detailed in code repository README files. Analysis scripts are written in R and Python. All code used to analyze data, perform statistical analyses, and generate figures is available at Github (https://github.com/sashaflevy/PPiSeq).

The following data sets were generated

Article and author information

Author details

  1. Zhimin Liu

    Department of Biochemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9333-8101
  2. Darach Miller

    Department of Genetics, Stanford University, Palo Alto, United States
    Competing interests
    No competing interests declared.
  3. Fangfei Li

    Department of Applied Mathematics and Statistics, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    No competing interests declared.
  4. Xianan Liu

    Department of Biochemistry, Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, United States
    Competing interests
    Xianan Liu, S.F.L. and X.L have filed a patent application (WO2017075529A1) on the double barcoding platform used in this manuscript..
  5. Sasha F Levy

    Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, United States [US]
    For correspondence
    sflevy@stanford.edu
    Competing interests
    Sasha F Levy, S.F.L. and X.L have filed a patent application (WO2017075529A1) on the double barcoding platform used in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0923-1636

Funding

National Institutes of Health (R01HG008354)

  • Sasha F Levy

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,203
    views
  • 348
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhimin Liu
  2. Darach Miller
  3. Fangfei Li
  4. Xianan Liu
  5. Sasha F Levy
(2020)
A large accessory protein interactome is rewired across environments
eLife 9:e62365.
https://doi.org/10.7554/eLife.62365

Share this article

https://doi.org/10.7554/eLife.62365

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.