1. Epidemiology and Global Health
Download icon

Protective effect of Mediterranean type glucose-6-phosphate dehydrogenase deficiency against Plasmodium vivax malaria

  1. Ghulam R Awab
  2. Fahima Aaram
  3. Natsuda Jamornthanyawat
  4. Kanokon Suwannasin
  5. Watcharee Pagornrat
  6. James A Watson
  7. Charles J Woodrow
  8. Arjen M Dondorp
  9. Nicholas PJ Day
  10. Mallika Imwong
  11. Nicholas J White  Is a corresponding author
  1. Nangarhar Medical Faculty, Afghanistan
  2. Kabul Medical University, Afghanistan
  3. Mahidol University, Thailand
  4. Mahidol Oxford Tropical Medicine Research Unit, Thailand
  5. Mahidol-Oxford Tropical Medicine Research Unit, Thailand
Short Report
  • Cited 0
  • Views 478
  • Annotations
Cite this article as: eLife 2021;10:e62448 doi: 10.7554/eLife.62448

Abstract

X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy. The severe Mediterranean variant (G6PD Med) found across Europe and Asia is thought to confer protection against malaria, but its effect is unclear. We fitted a Bayesian statistical model to observed G6PD Med allele frequencies in 999 Pashtun patients presenting with acute Plasmodium vivax malaria and 1408 population controls. G6PD Med was associated with reductions in symptomatic P. vivax malaria incidence of 76% (95% CI 58-88) in hemizygous males and homozygous females combined, and 55% (95% CI 38-68) in heterozygous females. Unless there is very large population stratification within the Pashtun (confounding these results), the G6PD Med genotype confers a very large and gene dose proportional protective effect against acute vivax malaria. The proportion of patients with vivax malaria at risk of haemolysis following 8-aminoquinoline radical cure is substantially overestimated by studies measuring G6PD deficiency prevalence in healthy subjects.

Article and author information

Author details

  1. Ghulam R Awab

    Nangarhar Medical Faculty, Jalalabad, Afghanistan
    Competing interests
    The authors declare that no competing interests exist.
  2. Fahima Aaram

    Medicine, Kabul Medical University, Kabul, Afghanistan
    Competing interests
    The authors declare that no competing interests exist.
  3. Natsuda Jamornthanyawat

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  4. Kanokon Suwannasin

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  5. Watcharee Pagornrat

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  6. James A Watson

    Nuffield Department of Medicine, Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5524-0325
  7. Charles J Woodrow

    Faculty of Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  8. Arjen M Dondorp

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5190-2395
  9. Nicholas PJ Day

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  10. Mallika Imwong

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicholas J White

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    For correspondence
    nickw@tropmedres.ac
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1897-1978

Funding

Wellcome Trust: Principle Fellowship of NJ White (093956/Z/10/Z)

  • Ghulam R Awab

Wellcome Trust: Major Overseas Programme-Thailand Unit Core Grant (093956/Z/10/Z)

  • Kanokon Suwannasin

Wellcome Trust: Training Fellowship (107548Z/15/Z)

  • Ghulam R Awab

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The clinical studies were approved by the Institutional Review Board of the Afghan Public Health Institute, Ministry of Public Health, Afghanistan, the Ethics Committee of the Faculty of Tropical Medicine, Mahidol University, Thailand, and the Oxford Tropical Research Ethics Committee, Oxford University, UK.

Reviewing Editor

  1. Amy Wesolowski, Johns Hopkins Bloomberg School of Public Health, United States

Publication history

  1. Received: August 25, 2020
  2. Accepted: February 3, 2021
  3. Accepted Manuscript published: February 5, 2021 (version 1)
  4. Version of Record published: February 15, 2021 (version 2)

Copyright

© 2021, Awab et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 478
    Page views
  • 72
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Nick K Jones et al.
    Research Advance

    The BNT162b2 mRNA COVID-19 vaccine (Pfizer-BioNTech) is being utilised internationally for mass COVID-19 vaccination. Evidence of single-dose protection against symptomatic disease has encouraged some countries to opt for delayed booster doses of BNT162b2, but the effect of this strategy on rates of asymptomatic SARS-CoV-2 infection remains unknown. We previously demonstrated frequent pauci- and asymptomatic SARS-CoV-2 infection amongst healthcare workers (HCWs) during the UK’s first wave of the COVID-19 pandemic, using a comprehensive PCR-based HCW screening programme (Rivett et al., 2020; Jones et al., 2020). Here, we evaluate the effect of first-dose BNT162b2 vaccination on test positivity rates, and find a four-fold reduction in asymptomatic infection amongst HCWs ≥12 days post-vaccination. These data provide real-world evidence of short-term protection against asymptomatic SARS-CoV-2 infection following a single dose of BNT162b2 vaccine, suggesting that mass first-dose vaccination will reduce SARS-CoV-2 transmission, as well as the burden of COVID-19 disease.

    1. Epidemiology and Global Health
    Francois Rerolle et al.
    Research Article Updated

    As countries in the Greater Mekong Sub-region (GMS) increasingly focus their malaria control and elimination efforts on reducing forest-related transmission, greater understanding of the relationship between deforestation and malaria incidence will be essential for programs to assess and meet their 2030 elimination goals. Leveraging village-level health facility surveillance data and forest cover data in a spatio-temporal modeling framework, we found evidence that deforestation is associated with short-term increases, but long-term decreases confirmed malaria case incidence in Lao People’s Democratic Republic (Lao PDR). We identified strong associations with deforestation measured within 30 km of villages but not with deforestation in the near (10 km) and immediate (1 km) vicinity. Results appear driven by deforestation in densely forested areas and were more pronounced for infections with Plasmodium falciparum (P. falciparum) than for Plasmodium vivax (P. vivax). These findings highlight the influence of forest activities on malaria transmission in the GMS.