Protective effect of Mediterranean type glucose-6-phosphate dehydrogenase deficiency against Plasmodium vivax malaria

  1. Ghulam R Awab
  2. Fahima Aaram
  3. Natsuda Jamornthanyawat
  4. Kanokon Suwannasin
  5. Watcharee Pagornrat
  6. James A Watson
  7. Charles J Woodrow
  8. Arjen M Dondorp
  9. Nicholas PJ Day
  10. Mallika Imwong
  11. Nicholas J White  Is a corresponding author
  1. Nangarhar Medical Faculty, Afghanistan
  2. Kabul Medical University, Afghanistan
  3. Mahidol University, Thailand
  4. Mahidol Oxford Tropical Medicine Research Unit, Thailand
  5. Mahidol-Oxford Tropical Medicine Research Unit, Thailand

Abstract

X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy. The severe Mediterranean variant (G6PD Med) found across Europe and Asia is thought to confer protection against malaria, but its effect is unclear. We fitted a Bayesian statistical model to observed G6PD Med allele frequencies in 999 Pashtun patients presenting with acute Plasmodium vivax malaria and 1408 population controls. G6PD Med was associated with reductions in symptomatic P. vivax malaria incidence of 76% (95% CI 58-88) in hemizygous males and homozygous females combined, and 55% (95% CI 38-68) in heterozygous females. Unless there is very large population stratification within the Pashtun (confounding these results), the G6PD Med genotype confers a very large and gene dose proportional protective effect against acute vivax malaria. The proportion of patients with vivax malaria at risk of haemolysis following 8-aminoquinoline radical cure is substantially overestimated by studies measuring G6PD deficiency prevalence in healthy subjects.

Data availability

All data used in the analysis are available along with the code which is given in the supplementary materials.

Article and author information

Author details

  1. Ghulam R Awab

    Nangarhar Medical Faculty, Jalalabad, Afghanistan
    Competing interests
    The authors declare that no competing interests exist.
  2. Fahima Aaram

    Medicine, Kabul Medical University, Kabul, Afghanistan
    Competing interests
    The authors declare that no competing interests exist.
  3. Natsuda Jamornthanyawat

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  4. Kanokon Suwannasin

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  5. Watcharee Pagornrat

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  6. James A Watson

    Nuffield Department of Medicine, Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5524-0325
  7. Charles J Woodrow

    Faculty of Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  8. Arjen M Dondorp

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5190-2395
  9. Nicholas PJ Day

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  10. Mallika Imwong

    Department of Molecular Tropical Medicine and Genetics, Mahidol University, Bangkok, Thailand
    Competing interests
    The authors declare that no competing interests exist.
  11. Nicholas J White

    Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
    For correspondence
    nickw@tropmedres.ac
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1897-1978

Funding

Wellcome Trust: Principle Fellowship of NJ White (093956/Z/10/Z)

  • Ghulam R Awab

Wellcome Trust: Major Overseas Programme-Thailand Unit Core Grant (093956/Z/10/Z)

  • Kanokon Suwannasin

Wellcome Trust: Training Fellowship (107548Z/15/Z)

  • Ghulam R Awab

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amy Wesolowski, Johns Hopkins Bloomberg School of Public Health, United States

Ethics

Human subjects: The clinical studies were approved by the Institutional Review Board of the Afghan Public Health Institute, Ministry of Public Health, Afghanistan, the Ethics Committee of the Faculty of Tropical Medicine, Mahidol University, Thailand, and the Oxford Tropical Research Ethics Committee, Oxford University, UK.

Version history

  1. Received: August 25, 2020
  2. Accepted: February 3, 2021
  3. Accepted Manuscript published: February 5, 2021 (version 1)
  4. Version of Record published: February 15, 2021 (version 2)

Copyright

© 2021, Awab et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,408
    views
  • 210
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ghulam R Awab
  2. Fahima Aaram
  3. Natsuda Jamornthanyawat
  4. Kanokon Suwannasin
  5. Watcharee Pagornrat
  6. James A Watson
  7. Charles J Woodrow
  8. Arjen M Dondorp
  9. Nicholas PJ Day
  10. Mallika Imwong
  11. Nicholas J White
(2021)
Protective effect of Mediterranean type glucose-6-phosphate dehydrogenase deficiency against Plasmodium vivax malaria
eLife 10:e62448.
https://doi.org/10.7554/eLife.62448

Share this article

https://doi.org/10.7554/eLife.62448

Further reading

    1. Epidemiology and Global Health
    Yuchen Zhang, Yitang Sun ... Kaixiong Ye
    Research Article

    Background:

    Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality.

    Methods:

    We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors.

    Results:

    Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15–38%) higher total mortality, 14% (95% CI, 0–31%) higher cancer mortality, and 31% (95% CI, 10–55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects.

    Conclusions:

    Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.

    Funding:

    Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

    1. Ecology
    2. Epidemiology and Global Health
    Aleksandra Kovacevic, David RM Smith ... Lulla Opatowski
    Research Article

    Non-pharmaceutical interventions implemented to block SARS-CoV-2 transmission in early 2020 led to global reductions in the incidence of invasive pneumococcal disease (IPD). By contrast, most European countries reported an increase in antibiotic resistance among invasive Streptococcus pneumoniae isolates from 2019 to 2020, while an increasing number of studies reported stable pneumococcal carriage prevalence over the same period. To disentangle the impacts of the COVID-19 pandemic on pneumococcal epidemiology in the community setting, we propose a mathematical model formalizing simultaneous transmission of SARS-CoV-2 and antibiotic-sensitive and -resistant strains of S. pneumoniae. To test hypotheses underlying these trends five mechanisms were built into the model and examined: (1) a population-wide reduction of antibiotic prescriptions in the community, (2) lockdown effect on pneumococcal transmission, (3) a reduced risk of developing an IPD due to the absence of common respiratory viruses, (4) community azithromycin use in COVID-19 infected individuals, (5) and a longer carriage duration of antibiotic-resistant pneumococcal strains. Among 31 possible pandemic scenarios involving mechanisms individually or in combination, model simulations surprisingly identified only two scenarios that reproduced the reported trends in the general population. They included factors (1), (3), and (4). These scenarios replicated a nearly 50% reduction in annual IPD, and an increase in antibiotic resistance from 20% to 22%, all while maintaining a relatively stable pneumococcal carriage. Exploring further, higher SARS-CoV-2 R0 values and synergistic within-host virus-bacteria interaction mechanisms could have additionally contributed to the observed antibiotic resistance increase. Our work demonstrates the utility of the mathematical modeling approach in unraveling the complex effects of the COVID-19 pandemic responses on AMR dynamics.