Structure of bacterial phospholipid transporter MlaFEDB with substrate bound

  1. Nicolas Coudray
  2. Georgia L Isom
  3. Mark R MacRae
  4. Mariyah N Saiduddin
  5. Gira Bhabha  Is a corresponding author
  6. Damian C Ekiert  Is a corresponding author
  1. New York University School of Medicine, United States

Abstract

In double-membraned bacteria, phospholipid transport across the cell envelope is critical to maintain the outer membrane barrier, which plays a key role in virulence and antibiotic resistance. An MCE transport system called Mla has been implicated in phospholipid trafficking and outer membrane integrity, and includes an ABC transporter, MlaFEDB. The transmembrane subunit, MlaE, has minimal sequence similarity to other transporters, and the structure of the entire inner-membrane MlaFEDB complex remains unknown. Here we report the cryo-EM structure of MlaFEDB at 3.05 Å resolution, revealing distant relationships to the LPS and MacAB transporters, as well as the eukaryotic ABCA/ABCG families. A continuous transport pathway extends from the MlaE substrate-binding site, through the channel of MlaD, and into the periplasm. Unexpectedly, two phospholipids are bound to MlaFEDB, suggesting that multiple lipid substrates may be transported each cycle. Our structure provides mechanistic insight into substrate recognition and transport by MlaFEDB.

Data availability

The model has been deposited in PDB under the accession code 6XBD and the map has been deposited in EMDB under the accession code EMD-22116. Raw data were deposited into EMPIAR (EMPIAR-10536).Plasmids generated in this study will be deposited in Addgene.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Nicolas Coudray

    Department of Cell Biology and Applied Bioinformatics Laboratory, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6050-2219
  2. Georgia L Isom

    Skirball Institute, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Mark R MacRae

    Department of Cell Biology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4941-9526
  4. Mariyah N Saiduddin

    Department of Cell Biology and Department of Microbiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gira Bhabha

    Department of Cell Biology, New York University School of Medicine, New York, United States
    For correspondence
    gira.bhabha@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0624-6178
  6. Damian C Ekiert

    Department of Cell Biology and Department of Microbiology, New York University School of Medicine, New York, United States
    For correspondence
    damian.ekiert@EKIERTLAB.ORG
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2570-0404

Funding

National Institutes of Health (R35GM128777)

  • Damian C Ekiert

National Institutes of Health (R00GM112982)

  • Gira Bhabha

Damon Runyon Cancer Research Foundation (DFS-20-16)

  • Gira Bhabha

Pew Charitable Trusts (PEW-00033055)

  • Gira Bhabha

American Heart Association (20POST35210202)

  • Georgia L Isom

National Institutes of Health (T32 GM088118)

  • Mark R MacRae

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adam Frost, University of California, San Francisco, United States

Version history

  1. Received: August 27, 2020
  2. Accepted: November 24, 2020
  3. Accepted Manuscript published: November 25, 2020 (version 1)
  4. Version of Record published: January 7, 2021 (version 2)

Copyright

© 2020, Coudray et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,181
    views
  • 525
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas Coudray
  2. Georgia L Isom
  3. Mark R MacRae
  4. Mariyah N Saiduddin
  5. Gira Bhabha
  6. Damian C Ekiert
(2020)
Structure of bacterial phospholipid transporter MlaFEDB with substrate bound
eLife 9:e62518.
https://doi.org/10.7554/eLife.62518

Share this article

https://doi.org/10.7554/eLife.62518

Further reading

    1. Structural Biology and Molecular Biophysics
    Nicholas James Ose, Paul Campitelli ... Sefika Banu Ozkan
    Research Article

    We integrate evolutionary predictions based on the neutral theory of molecular evolution with protein dynamics to generate mechanistic insight into the molecular adaptations of the SARS-COV-2 spike (S) protein. With this approach, we first identified candidate adaptive polymorphisms (CAPs) of the SARS-CoV-2 S protein and assessed the impact of these CAPs through dynamics analysis. Not only have we found that CAPs frequently overlap with well-known functional sites, but also, using several different dynamics-based metrics, we reveal the critical allosteric interplay between SARS-CoV-2 CAPs and the S protein binding sites with the human ACE2 (hACE2) protein. CAPs interact far differently with the hACE2 binding site residues in the open conformation of the S protein compared to the closed form. In particular, the CAP sites control the dynamics of binding residues in the open state, suggesting an allosteric control of hACE2 binding. We also explored the characteristic mutations of different SARS-CoV-2 strains to find dynamic hallmarks and potential effects of future mutations. Our analyses reveal that Delta strain-specific variants have non-additive (i.e., epistatic) interactions with CAP sites, whereas the less pathogenic Omicron strains have mostly additive mutations. Finally, our dynamics-based analysis suggests that the novel mutations observed in the Omicron strain epistatically interact with the CAP sites to help escape antibody binding.

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.