The trajectory of cortical GABA across the lifespan, an individual participant data meta-analysis of edited MRS studies

  1. Eric C Porges  Is a corresponding author
  2. Greg Jensen
  3. Brent Foster
  4. Richard AE Edden PhD
  5. Nicolaas AJ Puts
  1. University of Florida, United States
  2. Columbia University, United States
  3. Johns Hopkins University School of Medicine, United States
  4. King's College London, United Kingdom

Abstract

GABA is the principal inhibitory neurotransmitter in the human brain and can be measured with Magnetic Resonance Spectroscopy (MRS). Conflicting accounts report decreases and increases in cortical GABA levels across the lifespan. This incompatibility may be an artifact of the size and age-range of the samples utilized in these studies. No single study to date has included the entire lifespan. In this study, 8 suitable datasets were integrated to generate a model of the trajectory of frontal GABA estimates (as reported through edited MRS; both expressed as ratios and in institutional units). across the lifespan. Data were fit using both a log-normal curve and a nonparametric spline as regression models using a multi-level Bayesian model utilizing the Stan language. Integrated data show the lifespan trajectory of frontal GABA measures involves an early period of increase, followed by a period of stability during early adulthood, with a gradual decrease during adulthood and aging that is described well by both spline and log-normal models. The information gained will provide a general framework to inform expectations of future studies based on the age of the population being studied.

Data availability

All data and code used in this manuscript can be found here https://osf.io/rmhwc/

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Eric C Porges

    Clinical and Health Psychology, University of Florida, Gainesville, United States
    For correspondence
    eporges@phhp.ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3885-5859
  2. Greg Jensen

    Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brent Foster

    Clinical and Health Psychology, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Richard AE Edden PhD

    Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicolaas AJ Puts

    King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (KO1AA025306)

  • Eric C Porges

Evelyn F. McKnight Brain Research Foundation

  • Eric C Porges

Center for Cognitive Aging and Memory at the University of Florida

  • Eric C Porges

National Institutes of Health (R00MH107719)

  • Nicolaas AJ Puts

National Institutes of Health (R01EB016089)

  • Richard AE Edden PhD

National Institutes of Health (R01MH106564)

  • Richard AE Edden PhD

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Porges et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,862
    views
  • 307
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric C Porges
  2. Greg Jensen
  3. Brent Foster
  4. Richard AE Edden PhD
  5. Nicolaas AJ Puts
(2021)
The trajectory of cortical GABA across the lifespan, an individual participant data meta-analysis of edited MRS studies
eLife 10:e62575.
https://doi.org/10.7554/eLife.62575

Share this article

https://doi.org/10.7554/eLife.62575

Further reading

    1. Neuroscience
    Steven S Hou, Yuya Ikegawa ... Masato Maesako
    Tools and Resources

    γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720–670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential ‘cell non-autonomous’ regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.

    1. Neuroscience
    Francesco Longo
    Insight

    The neurotransmitter dopamine helps form long-term memories by increasing the production of proteins through a unique signaling pathway.