Bidirectional regulation of glial potassium buffering: glioprotection versus neuroprotection

  1. Hailun Li
  2. Lorenzo Lones
  3. Aaron DiAntonio  Is a corresponding author
  1. Washington University School of Medicine, United States

Abstract

Glia modulate neuronal excitability and seizure sensitivity by maintaining potassium and water homeostasis. A SIK3-regulated gene expression program controls the glial capacity to buffer K+ and water in Drosophila, however upstream regulatory mechanisms are unknown. Here we identify an octopaminergic circuit linking neuronal activity to glial ion and water buffering. Under basal conditions, octopamine functions through the inhibitory octopaminergic GPCR OctbR to upregulate glial buffering capacity, while under pathological K+ stress, octopamine signals through the stimulatory octopaminergic GPCR OAMB1 to downregulate the glial buffering program. Failure to downregulate this program leads to intracellular glia swelling and stress signaling, suggesting that turning down this pathway is glioprotective. In the eag shaker Drosophila seizure model, the SIK3-mediated buffering pathway in inactivated. Re-activation of the glial buffering program dramatically suppresses neuronal hyperactivity, seizures, and shortened lifespan in this mutant. These findings highlight the therapeutic potential of a glial-centric therapeutic strategy for diseases of hyperexcitability.

Data availability

All data generated or analyzed during this study are included in the manuscript.

Article and author information

Author details

  1. Hailun Li

    Developmental Biology, Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lorenzo Lones

    Developmental Biology, Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aaron DiAntonio

    Developmental Biology, Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine, St. Louis, United States
    For correspondence
    diantonio@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7262-0968

Funding

National Institutes of Health (NS065053)

  • Aaron DiAntonio

American Heart Association (18PRE34030101)

  • Hailun Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,015
    views
  • 155
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hailun Li
  2. Lorenzo Lones
  3. Aaron DiAntonio
(2021)
Bidirectional regulation of glial potassium buffering: glioprotection versus neuroprotection
eLife 10:e62606.
https://doi.org/10.7554/eLife.62606

Share this article

https://doi.org/10.7554/eLife.62606

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.