Preserving inhibition with a disinhibitory microcircuit in the retina

  1. Qiang Chen
  2. Robert G Smith  Is a corresponding author
  3. Xiaolin Huang
  4. Wei Wei  Is a corresponding author
  1. The University of Chicago, United States
  2. University of Pennsylvania, United States

Abstract

Previously, we found that in the mammalian retina, inhibitory inputs onto starburst amacrine cells (SACs) are required for robust direction selectivity of On-Off direction-selective ganglion cells (On-Off DSGCs) against noisy backgrounds (Chen et al., 2016). However, the source of the inhibitory inputs to SACs and how this inhibition confers noise resilience of DSGCs are unknown. Here, we show that when visual noise is present in the background, the motion-evoked inhibition to an On-Off DSGC is preserved by a disinhibitory motif consisting of a serially connected network of neighboring SACs presynaptic to the DSGC. This preservation of inhibition by a disinhibitory motif arises from the interaction between visually evoked network dynamics and short-term synaptic plasticity at the SAC-DSGC synapse. While the disinhibitory microcircuit is well studied for its disinhibitory function in brain circuits, our results highlight the algorithmic flexibility of this motif beyond disinhibition due to the mutual influence between network and synaptic plasticity mechanisms.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Custom scrpts are available at https://github.com/chrischen2/eLife2020Stimulus.git

Article and author information

Author details

  1. Qiang Chen

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Robert G Smith

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    rob@bip.anatomy.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5703-1324
  3. Xiaolin Huang

    Department of Neurobiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7367-8347
  4. Wei Wei

    Department of Neurobiology, The University of Chicago, Chicago, United States
    For correspondence
    weiw@uchicago.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7771-5974

Funding

NIH (NIH R01 EY024016)

  • Wei Wei

McKnight Foundation (McKnight Scholarship Award)

  • Wei Wei

NIH (EY022070)

  • Robert G Smith

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures to maintain and use mice were in accordance with the University of Chicago Institutional Animal Care and Use Committee (Protocol number ACUP 72247) and in conformance with the NIH Guide for the Care and Use of Laboratory Animals and the Public Health Service Policy.

Copyright

© 2020, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,345
    views
  • 206
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiang Chen
  2. Robert G Smith
  3. Xiaolin Huang
  4. Wei Wei
(2020)
Preserving inhibition with a disinhibitory microcircuit in the retina
eLife 9:e62618.
https://doi.org/10.7554/eLife.62618

Share this article

https://doi.org/10.7554/eLife.62618

Further reading

    1. Neuroscience
    Ji Eun Ryu, Kyu-Won Shim ... Eun Young Kim
    Research Article

    The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.

    1. Neuroscience
    Toshiki Kobayashi, Daichi Nozaki
    Research Article

    The remarkable ability of the motor system to adapt to novel environments has traditionally been investigated using kinematically non-redundant tasks, such as planar reaching movements. This limitation prevents the study of how the motor system achieves adaptation by altering the movement patterns of our redundant body. To address this issue, we developed a redundant motor task in which participants reached for targets with the tip of a virtual stick held with both hands. Despite the redundancy of the task, participants consistently employed a stereotypical strategy of flexibly changing the tilt angle of the stick depending on the direction of tip movement. Thus, this baseline relationship between tip-movement direction and stick-tilt angle constrained both the physical and visual movement patterns of the redundant system. Our task allowed us to systematically investigate how the motor system implicitly changed both the tip-movement direction and the stick-tilt angle in response to imposed visual perturbations. Both types of perturbations, whether directly affecting the task (tip-movement direction) or not (stick-tilt angle around the tip), drove adaptation, and the patterns of implicit adaptation were guided by the baseline relationship. Consequently, tip-movement adaptation was associated with changes in stick-tilt angle, and intriguingly, even seemingly ignorable stick-tilt perturbations significantly influenced tip-movement adaptation, leading to tip-movement direction errors. These findings provide a new understanding that the baseline relationship plays a crucial role not only in how the motor system controls movement of the redundant system, but also in how it implicitly adapts to modify movement patterns.