Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity

  1. Juliette Boeri
  2. Claude Meunier
  3. Hervé Le Corronc
  4. Pascal Branchereau
  5. Yulia Timofeeva
  6. François-Xavier Lejeune
  7. Christine Mouffle
  8. Hervé Arulkandarajah
  9. Jean Marie Mangin
  10. Pascal Legendre  Is a corresponding author
  11. Antonny Czarnecki  Is a corresponding author
  1. Sorbonne University, France
  2. Université de Paris, France
  3. Université de Bordeaux, CNRS, France
  4. UCL Queen Square Institute of Neurology, University College London, United Kingdom
  5. Institut du Cerveau et de la Moelle Épinière, France
  6. Université Pierre et Marie Curie, France

Abstract

Renshaw cells (V1R) are excitable as soon as they reach their final location next to the spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first time, the mechanisms underlying the electrophysiological properties of V1R during early embryonic development of the mouse spinal cord locomotor networks (E11.5-E16.5). We found that these interneurons are subdivided into several functional clusters from E11.5 and then display an unexpected transitory involution process during which they lose their ability to sustain tonic firing. We demonstrated that the essential factor controlling the diversity of the discharge pattern of embryonic V1R is the ratio of a persistent sodium conductance to a delayed rectifier potassium conductance. Taken together, our results reveal how a simple mechanism, based on the synergy of two voltage-dependent conductances that are ubiquitous in neurons, can produce functional diversity in embryonic V1R and control their early developmental trajectory.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3 (Source data files for cluster analysis).

Article and author information

Author details

  1. Juliette Boeri

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Claude Meunier

    Centre de Neurosciences Intégratives et Cognition, CNRS UMR 8002, Institut Neurosciences et Cognition, Université de Paris, PARIS, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Hervé Le Corronc

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascal Branchereau

    Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA) - UMR 5287, Université de Bordeaux, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3972-8229
  5. Yulia Timofeeva

    Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, LONDON, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. François-Xavier Lejeune

    U1127 INSERM, Institut du Cerveau et de la Moelle Épinière, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Christine Mouffle

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Hervé Arulkandarajah

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean Marie Mangin

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Pascal Legendre

    INSERM, UMR_S 1130, CNRS, UMR 8246, Neuroscience Paris Seine, Institute of Biology Paris Seine, Sorbonne University, Paris, France
    For correspondence
    pascal.legendre@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5086-4515
  11. Antonny Czarnecki

    Neurosciences Paris Seine (UM119 UPMC, UMR8246 CNRS, U1130 INSERM), Université Pierre et Marie Curie, Paris, France
    For correspondence
    antonny.czarnecki@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5104-034X

Funding

Fondation pour la recherche medicale (DEQ20160334891)

  • Pascal Legendre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeffrey C Smith, National Institute of Neurological Disorders and Stroke, United States

Ethics

Animal experimentation: Experiments were performed in accordance with European Community guiding principles on the care and use of animals (86/609/CEE, CE Off J no. L358, 18 December 1986), French decree no. 97/748 of October 19, 1987 (Journal Officiel République Française, 20 October 1987, pp. 12245-12248). All procedures were carried out in accordance with the local ethics committee of local Universities and recommendations from the CNRS. pregnant mice were anesthetized by intramuscular injection of a mix of ketamine and xylazine and sacrificed using a lethal dose of CO2 after embryos of either sex were removed. Every effort was made to minimize suffering.

Version history

  1. Received: August 31, 2020
  2. Accepted: April 24, 2021
  3. Accepted Manuscript published: April 26, 2021 (version 1)
  4. Accepted Manuscript updated: April 29, 2021 (version 2)
  5. Version of Record published: May 21, 2021 (version 3)

Copyright

© 2021, Boeri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 717
    views
  • 133
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juliette Boeri
  2. Claude Meunier
  3. Hervé Le Corronc
  4. Pascal Branchereau
  5. Yulia Timofeeva
  6. François-Xavier Lejeune
  7. Christine Mouffle
  8. Hervé Arulkandarajah
  9. Jean Marie Mangin
  10. Pascal Legendre
  11. Antonny Czarnecki
(2021)
Two opposite voltage-dependent currents control the unusual early development pattern of embryonic Renshaw cell electrical activity
eLife 10:e62639.
https://doi.org/10.7554/eLife.62639

Share this article

https://doi.org/10.7554/eLife.62639

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.