TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin

  1. Fernando R Balestra  Is a corresponding author
  2. Andrés Domínguez-Calvo
  3. Benita Wolf
  4. Coralie Busso
  5. Alizée Buff
  6. Tessa Averink
  7. Marita Lipsanen-Nyman
  8. Pablo Huertas
  9. Rosa M Ríos
  10. Pierre Gönczy  Is a corresponding author
  1. CABIMER-University of Seville, Spain
  2. Swiss Federal Institute of Technology, Switzerland
  3. University of Helsinki, Finland

Abstract

TRIM37 is an E3 ubiquitin ligase mutated in Mulibrey nanism, a disease with impaired organ growth and increased tumor formation. TRIM37 depletion from tissue culture cells results in supernumerary foci bearing the centriolar protein Centrin. Here, we characterize these centriolar protein assemblies (Cenpas) to uncover the mechanism of action of TRIM37. We find that an atypical de novo assembly pathway can generate Cenpas that act as microtubule organizing centers (MTOCs), including in Mulibrey patient cells. Correlative light electron microscopy reveals that Cenpas are centriole-related or electron-dense structures with stripes. TRIM37 regulates the stability and solubility of Centrobin, which accumulates in elongated entities resembling the striped electron dense structures upon TRIM37 depletion. Furthermore, Cenpas formation upon TRIM37 depletion requires PLK4, as well as two parallel pathways relying respectively on Centrobin and PLK1. Overall, our work uncovers how TRIM37 prevents Cenpas formation, which would otherwise threaten genome integrity, including in Mulibrey patients.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Fernando R Balestra

    Genome Biology Department, CABIMER-University of Seville, Seville, Spain
    For correspondence
    fernando.balestra@cabimer.es
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrés Domínguez-Calvo

    Genome Biology Department, CABIMER-University of Seville, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Benita Wolf

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5673-4239
  4. Coralie Busso

    Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Alizée Buff

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Tessa Averink

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Marita Lipsanen-Nyman

    Children's Hospital, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Pablo Huertas

    Genome Biology Department, CABIMER-University of Seville, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1756-4449
  9. Rosa M Ríos

    Cell Dynamics and Signalling, CABIMER-University of Seville, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pierre Gönczy

    Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
    For correspondence
    pierre.gonczy@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6305-6883

Funding

Krebsforschung Schweiz (KFS-3388-02-2014)

  • Pierre Gönczy

Marie Curie Actions (PIEF-GA-2013-629414)

  • Fernando R Balestra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jens Lüders, Institute for Research in Biomedicine, Spain

Ethics

Human subjects: Fibroblast cultures were established from skin biopsy samples with approval by the Institutional Review Board of the Helsinki University Central Hospital (183/13/03/03/2009). The patients signed an informed consent for the use of fibroblast cultures.

Version history

  1. Received: September 2, 2020
  2. Accepted: January 22, 2021
  3. Accepted Manuscript published: January 25, 2021 (version 1)
  4. Version of Record published: February 8, 2021 (version 2)

Copyright

© 2021, Balestra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,013
    views
  • 388
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fernando R Balestra
  2. Andrés Domínguez-Calvo
  3. Benita Wolf
  4. Coralie Busso
  5. Alizée Buff
  6. Tessa Averink
  7. Marita Lipsanen-Nyman
  8. Pablo Huertas
  9. Rosa M Ríos
  10. Pierre Gönczy
(2021)
TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin
eLife 10:e62640.
https://doi.org/10.7554/eLife.62640

Share this article

https://doi.org/10.7554/eLife.62640

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.