TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin

  1. Fernando R Balestra  Is a corresponding author
  2. Andrés Domínguez-Calvo
  3. Benita Wolf
  4. Coralie Busso
  5. Alizée Buff
  6. Tessa Averink
  7. Marita Lipsanen-Nyman
  8. Pablo Huertas
  9. Rosa M Ríos
  10. Pierre Gönczy  Is a corresponding author
  1. CABIMER-University of Seville, Spain
  2. Swiss Federal Institute of Technology, Switzerland
  3. University of Helsinki, Finland

Abstract

TRIM37 is an E3 ubiquitin ligase mutated in Mulibrey nanism, a disease with impaired organ growth and increased tumor formation. TRIM37 depletion from tissue culture cells results in supernumerary foci bearing the centriolar protein Centrin. Here, we characterize these centriolar protein assemblies (Cenpas) to uncover the mechanism of action of TRIM37. We find that an atypical de novo assembly pathway can generate Cenpas that act as microtubule organizing centers (MTOCs), including in Mulibrey patient cells. Correlative light electron microscopy reveals that Cenpas are centriole-related or electron-dense structures with stripes. TRIM37 regulates the stability and solubility of Centrobin, which accumulates in elongated entities resembling the striped electron dense structures upon TRIM37 depletion. Furthermore, Cenpas formation upon TRIM37 depletion requires PLK4, as well as two parallel pathways relying respectively on Centrobin and PLK1. Overall, our work uncovers how TRIM37 prevents Cenpas formation, which would otherwise threaten genome integrity, including in Mulibrey patients.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Fernando R Balestra

    Genome Biology Department, CABIMER-University of Seville, Seville, Spain
    For correspondence
    fernando.balestra@cabimer.es
    Competing interests
    The authors declare that no competing interests exist.
  2. Andrés Domínguez-Calvo

    Genome Biology Department, CABIMER-University of Seville, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Benita Wolf

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5673-4239
  4. Coralie Busso

    Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Alizée Buff

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Tessa Averink

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Marita Lipsanen-Nyman

    Children's Hospital, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Pablo Huertas

    Genome Biology Department, CABIMER-University of Seville, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1756-4449
  9. Rosa M Ríos

    Cell Dynamics and Signalling, CABIMER-University of Seville, Seville, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Pierre Gönczy

    Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology, Lausanne, Switzerland
    For correspondence
    pierre.gonczy@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6305-6883

Funding

Krebsforschung Schweiz (KFS-3388-02-2014)

  • Pierre Gönczy

Marie Curie Actions (PIEF-GA-2013-629414)

  • Fernando R Balestra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Fibroblast cultures were established from skin biopsy samples with approval by the Institutional Review Board of the Helsinki University Central Hospital (183/13/03/03/2009). The patients signed an informed consent for the use of fibroblast cultures.

Copyright

© 2021, Balestra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,116
    views
  • 398
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fernando R Balestra
  2. Andrés Domínguez-Calvo
  3. Benita Wolf
  4. Coralie Busso
  5. Alizée Buff
  6. Tessa Averink
  7. Marita Lipsanen-Nyman
  8. Pablo Huertas
  9. Rosa M Ríos
  10. Pierre Gönczy
(2021)
TRIM37 prevents formation of centriolar protein assemblies by regulating Centrobin
eLife 10:e62640.
https://doi.org/10.7554/eLife.62640

Share this article

https://doi.org/10.7554/eLife.62640

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.