Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior

  1. Fanny Lafouresse  Is a corresponding author
  2. Romain Jugele
  3. Sabina Müller
  4. Marine Doineau
  5. Valérie Duplan-Eche
  6. Eric Espinosa
  7. Marie-Pierre Puissegur
  8. Sébastien Gadat
  9. Salvatore Valitutti
  1. Centre de Recherche en Cancérologie de Toulouse, France
  2. Toulouse School of Economics, UMR 5604, France
  3. Centre de Physiopathologie de Toulouse Purpan, France

Abstract

Cytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy and live cell imaging. We show that CD107a+-intracellular vesicles, perforin and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual CTL dictates CTL killing capacity. Together, our results show the stochastic asymmetric distribution of effector molecules in dividing CD8+ T cells. They propose uneven mitotic repartition of pre-packaged lytic components as a mechanism generating non-hereditary functional heterogeneity in CTL.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Fanny Lafouresse

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    For correspondence
    fanny.lafouresse@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6572-8631
  2. Romain Jugele

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabina Müller

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marine Doineau

    Mathematics of decision making and statistics, Toulouse School of Economics, UMR 5604, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Valérie Duplan-Eche

    INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Eric Espinosa

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Marie-Pierre Puissegur

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Sébastien Gadat

    Mathematics of decision making and statistics, Toulouse School of Economics, UMR 5604, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Salvatore Valitutti

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Laboratoire d'Excellence Toulouse Cancer (ANR11-LABEX)

  • Salvatore Valitutti

Region occitanie (RCLE R14007BB,671 34 No 12052802,and RBIO R15070BB,No 14054342)

  • Salvatore Valitutti

Fondation Toulouse Cancer Santé (2014CS044)

  • Salvatore Valitutti

Ligue Contre le Cancer (équipe labellisée)

  • Salvatore Valitutti

Ligue Contre le Cancer (4th year phD)

  • Romain Jugele

Bristol-Myers Squibb (No CA184-575)

  • Salvatore Valitutti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Buffy coats of healthy donors were obtained through the Etablissement Français du Sang (EFS, Toulouse, France). Blood samples were collected and processed following standard ethical procedures (Helsinki 433 protocol), after obtaining written informed consent from each donor and approval by the French Ministry of the Research (transfer agreement AC-2014-2384). Approbation by the ethical department of the French Ministry of the Research for the preparation and conservation of cell lines and clones starting from healthy donor human blood samples has been obtained (authorization No DC-2018-3223).

Copyright

© 2021, Lafouresse et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,241
    views
  • 185
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fanny Lafouresse
  2. Romain Jugele
  3. Sabina Müller
  4. Marine Doineau
  5. Valérie Duplan-Eche
  6. Eric Espinosa
  7. Marie-Pierre Puissegur
  8. Sébastien Gadat
  9. Salvatore Valitutti
(2021)
Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior
eLife 10:e62691.
https://doi.org/10.7554/eLife.62691

Share this article

https://doi.org/10.7554/eLife.62691

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Gregory T Walker, Araceli Perez-Lopez ... Manuela Raffatellu
    Research Article

    The chemokine CCL28 is highly expressed in mucosal tissues, but its role during infection is not well understood. Here we show that CCL28 promotes neutrophil accumulation in the gut of mice infected with Salmonella and in the lung of mice infected with Acinetobacter. Neutrophils isolated from the infected mucosa expressed the CCL28 receptors CCR3 and, to a lesser extent, CCR10, on their surface. The functional consequences of CCL28 deficiency varied between the two infections: Ccl28-/- mice were highly susceptible to Salmonella gut infection but highly resistant to otherwise lethal Acinetobacter lung infection. In vitro, unstimulated neutrophils harbored pre-formed intracellular CCR3 that was rapidly mobilized to the cell surface following phagocytosis or inflammatory stimuli. Moreover, CCL28 stimulation enhanced neutrophil antimicrobial activity, production of reactive oxygen species, and formation of extracellular traps, all processes largely dependent on CCR3. Consistent with the different outcomes in the two infection models, neutrophil stimulation with CCL28 boosted the killing of Salmonella but not Acinetobacter. CCL28 thus plays a critical role in the immune response to mucosal pathogens by increasing neutrophil accumulation and activation, which can enhance pathogen clearance but also exacerbate disease depending on the mucosal site and the infectious agent.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Daniel Spari, Annina Schmid ... Guido Beldi
    Research Article

    Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.