Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior

  1. Fanny Lafouresse  Is a corresponding author
  2. Romain Jugele
  3. Sabina Müller
  4. Marine Doineau
  5. Valérie Duplan-Eche
  6. Eric Espinosa
  7. Marie-Pierre Puissegur
  8. Sébastien Gadat
  9. Salvatore Valitutti
  1. Centre de Recherche en Cancérologie de Toulouse, France
  2. Toulouse School of Economics, UMR 5604, France
  3. Centre de Physiopathologie de Toulouse Purpan, France

Abstract

Cytotoxic immune cells are endowed with a high degree of heterogeneity in their lytic function, but how this heterogeneity is generated is still an open question. We therefore investigated if human CD8+ T cells could segregate their lytic components during telophase, using imaging flow cytometry, confocal microscopy and live cell imaging. We show that CD107a+-intracellular vesicles, perforin and granzyme B unevenly segregate in a constant fraction of telophasic cells during each division round. Mathematical modeling posits that unequal lytic molecule inheritance by daughter cells results from the random distribution of lytic granules on the two sides of the cleavage furrow. Finally, we establish that the level of lytic compartment in individual CTL dictates CTL killing capacity. Together, our results show the stochastic asymmetric distribution of effector molecules in dividing CD8+ T cells. They propose uneven mitotic repartition of pre-packaged lytic components as a mechanism generating non-hereditary functional heterogeneity in CTL.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Fanny Lafouresse

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    For correspondence
    fanny.lafouresse@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6572-8631
  2. Romain Jugele

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabina Müller

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Marine Doineau

    Mathematics of decision making and statistics, Toulouse School of Economics, UMR 5604, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Valérie Duplan-Eche

    INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Eric Espinosa

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Marie-Pierre Puissegur

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Sébastien Gadat

    Mathematics of decision making and statistics, Toulouse School of Economics, UMR 5604, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Salvatore Valitutti

    INSERM U1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Laboratoire d'Excellence Toulouse Cancer (ANR11-LABEX)

  • Salvatore Valitutti

Region occitanie (RCLE R14007BB,671 34 No 12052802,and RBIO R15070BB,No 14054342)

  • Salvatore Valitutti

Fondation Toulouse Cancer Santé (2014CS044)

  • Salvatore Valitutti

Ligue Contre le Cancer (équipe labellisée)

  • Salvatore Valitutti

Ligue Contre le Cancer (4th year phD)

  • Romain Jugele

Bristol-Myers Squibb (No CA184-575)

  • Salvatore Valitutti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Buffy coats of healthy donors were obtained through the Etablissement Français du Sang (EFS, Toulouse, France). Blood samples were collected and processed following standard ethical procedures (Helsinki 433 protocol), after obtaining written informed consent from each donor and approval by the French Ministry of the Research (transfer agreement AC-2014-2384). Approbation by the ethical department of the French Ministry of the Research for the preparation and conservation of cell lines and clones starting from healthy donor human blood samples has been obtained (authorization No DC-2018-3223).

Copyright

© 2021, Lafouresse et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,261
    views
  • 188
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fanny Lafouresse
  2. Romain Jugele
  3. Sabina Müller
  4. Marine Doineau
  5. Valérie Duplan-Eche
  6. Eric Espinosa
  7. Marie-Pierre Puissegur
  8. Sébastien Gadat
  9. Salvatore Valitutti
(2021)
Stochastic asymmetric repartition of lytic machinery in dividing CD8+ T cells generates heterogeneous killing behavior
eLife 10:e62691.
https://doi.org/10.7554/eLife.62691

Share this article

https://doi.org/10.7554/eLife.62691

Further reading

    1. Immunology and Inflammation
    Jian Cui, Hua Li ... Congqing Wu
    Short Report

    Systemic blood coagulation accompanies inflammation during severe infections like sepsis and COVID. We previously established a link between coagulopathy and pyroptosis, a vital defense mechanism against infection. During pyroptosis, the formation of gasdermin-D (GSDMD) pores on the plasma membrane leads to the release of tissue factor (TF)-positive microvesicles (MVs) that are procoagulant. Mice lacking GSDMD release fewer of these procoagulant MVs. However, the specific mechanisms coupling the activation of GSDMD to MV release remain unclear. Plasma membrane rupture (PMR) in pyroptosis was recently reported to be actively mediated by the transmembrane protein Ninjurin-1 (NINJ1). Here, we show that NINJ1 promotes procoagulant MV release during pyroptosis. Haploinsufficiency or glycine inhibition of NINJ1 limited the release of procoagulant MVs and inflammatory cytokines, and partially protected against blood coagulation and lethality triggered by bacterial flagellin. Our findings suggest a crucial role for NINJ1-dependent PMR in inflammasome-induced blood coagulation and inflammation.

    1. Immunology and Inflammation
    Sytse J Piersma, Shasha Li ... Wayne M Yokoyama
    Research Article

    Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of major histocompatibility complex class I (MHC-I) and related molecules. Functionally, these receptor families are involved in the licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on an H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.