Place-cell capacity and volatility with grid-like inputs

  1. Man Yi Yim
  2. Lorenzo A Sadun
  3. Ila R Fiete  Is a corresponding author
  4. Thibaud Taillefumier  Is a corresponding author
  1. The University of Texas, Austin, United States
  2. Brain & Cognitive Sciences Department and the McGovern Institute at MIT, United States

Abstract

What factors constrain the arrangement of the multiple fields of a place cell? By modeling place cells as perceptrons that act on multiscale periodic grid-cell inputs, we analytically enumerate a place cell's repertoire - how many field arrangements it can realize without external cues while its grid inputs are unique; and derive its capacity - the spatial range over which it can achieve any field arrangement. We show that the repertoire is very large and relatively noise-robust. However, the repertoire is a vanishing fraction of all arrangements, while capacity scales only as the sum of the grid periods so field arrangements are constrained over larger distances. Thus, grid-driven place field arrangements define a large response scaffold that is strongly constrained by its structured inputs. Finally, we show that altering grid-place weights to generate an arbitrary new place field strongly affects existing arrangements, which could explain the volatility of the place code.

Data availability

The authors confirm that the data supporting the findings of this study are available within the article. Implementation details and code are available at: https://github.com/myyim/placecellperceptron.

Article and author information

Author details

  1. Man Yi Yim

    Department of Neuroscience, The University of Texas, Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lorenzo A Sadun

    Department of Mathematics, The University of Texas, Austin, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2518-573X
  3. Ila R Fiete

    Brain & Cognitive Sciences Department and the McGovern Institute at MIT, Cambridge, United States
    For correspondence
    fiete@mit.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4738-2539
  4. Thibaud Taillefumier

    Department of Mathematics and Neuroscience, The University of Texas, Austin, Austin, United States
    For correspondence
    ttaillef@austin.utexas.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3538-6882

Funding

Simons Foundation (Simons Collaboration on the Global Brain)

  • Man Yi Yim
  • Ila R Fiete

Howard Hughes Medical Institute (Faculty Scholars Program)

  • Ila R Fiete

Alfred P. Sloan Foundation (Alfred P. Sloan Research Fellowship FG-2017-9554)

  • Thibaud Taillefumier

Office of Naval Research (S&T BAA Award N00014-19-1-2584)

  • Ila R Fiete

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,372
    views
  • 300
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Man Yi Yim
  2. Lorenzo A Sadun
  3. Ila R Fiete
  4. Thibaud Taillefumier
(2021)
Place-cell capacity and volatility with grid-like inputs
eLife 10:e62702.
https://doi.org/10.7554/eLife.62702

Share this article

https://doi.org/10.7554/eLife.62702

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Pierre Barrat-Charlaix, Richard A Neher
    Research Article

    As pathogens spread in a population of hosts, immunity is built up, and the pool of susceptible individuals are depleted. This generates selective pressure, to which many human RNA viruses, such as influenza virus or SARS-CoV-2, respond with rapid antigenic evolution and frequent emergence of immune evasive variants. However, the host’s immune systems adapt, and older immune responses wane, such that escape variants only enjoy a growth advantage for a limited time. If variant growth dynamics and reshaping of host-immunity operate on comparable time scales, viral adaptation is determined by eco-evolutionary interactions that are not captured by models of rapid evolution in a fixed environment. Here, we use a Susceptible/Infected model to describe the interaction between an evolving viral population in a dynamic but immunologically diverse host population. We show that depending on strain cross-immunity, heterogeneity of the host population, and durability of immune responses, escape variants initially grow exponentially, but lose their growth advantage before reaching high frequencies. Their subsequent dynamics follows an anomalous random walk determined by future escape variants and results in variant trajectories that are unpredictable. This model can explain the apparent contradiction between the clearly adaptive nature of antigenic evolution and the quasi-neutral dynamics of high-frequency variants observed for influenza viruses.

    1. Computational and Systems Biology
    2. Medicine
    Xin Zhou, Zhinuo Jenny Wang ... Blanca Rodriguez
    Research Article

    Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.