Phylogenomics of white-eyes, a 'great speciator', reveals Indonesian archipelago as the center of lineage diversity

  1. Chyi Yin Gwee
  2. Kritika M Garg
  3. Balaji Chattopadhyay
  4. Keren R Sadanandan
  5. Dewi M Prawiradilaga
  6. Martin Irestedt
  7. Fumin Lei
  8. Luke M Bloch
  9. Jessica GH Lee
  10. Mohammad Irham
  11. Tri Haryoko
  12. Malcolm CK Soh
  13. Kelvin S-H Peh
  14. Karen MC Rowe
  15. Teuku Reza Ferasyi
  16. Shaoyuan Wu
  17. Guinevere OU Wogan
  18. Rauri CK Bowie
  19. Frank E Rheindt  Is a corresponding author
  1. National University of Singapore, Singapore
  2. Indonesian Institute of Sciences (LIPI), Indonesia
  3. Swedish Museum of Natural History, Sweden
  4. Institute of Zoology (CAS), China
  5. University of California, Berkeley, United States
  6. Wildlife Reserves Singapore, Singapore
  7. University of Western Australia, Australia
  8. University of Southampton, United Kingdom
  9. Museums Victoria, Australia
  10. Universitas Syiah Kuala, Indonesia
  11. Jiangsu Normal University, China

Abstract

Archipelagoes serve as important 'natural laboratories' which facilitate the study of island radiations and contribute to the understanding of evolutionary processes. The white-eye genus Zosterops is a classical example of a 'great speciator', comprising c. 100 species from across the Old World, most of them insular. We achieved an extensive geographic DNA sampling of Zosterops by using historical specimens and recently collected samples. Using over 700 genome-wide loci in conjunction with coalescent species tree methods and gene flow detection approaches, we untangled the reticulated evolutionary history of Zosterops, which comprises three main clades centered in Indo-Africa, Asia, and Australasia, respectively. Genetic introgression between species permeates the Zosterops phylogeny, regardless of how distantly related species are. Crucially, we identified the Indonesian archipelago, and specifically Borneo, as the major centre of diversity and the only area where all three main clades overlap, attesting to the evolutionary importance of this region.

Data availability

All data generated or analysed during this study are included in Dryad database: https://doi.org/10.5061/dryad.8931zcrmt. Raw FASTQ files of target enriched samples are available on NCBI under BioProject no. PRJNA682287.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chyi Yin Gwee

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Kritika M Garg

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Balaji Chattopadhyay

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Keren R Sadanandan

    Biological Sciences, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Dewi M Prawiradilaga

    Division of Zoology, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin Irestedt

    Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Fumin Lei

    Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology (CAS), Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Luke M Bloch

    Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jessica GH Lee

    Conservation, Wildlife Reserves Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Mohammad Irham

    Division of Zoology, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
    Competing interests
    The authors declare that no competing interests exist.
  11. Tri Haryoko

    Division of Zoology, Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia
    Competing interests
    The authors declare that no competing interests exist.
  12. Malcolm CK Soh

    School of Biological Sciences, University of Western Australia, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Kelvin S-H Peh

    School of Biological Sciences, University of Southampton, Southampton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2921-1341
  14. Karen MC Rowe

    Sciences Department, Museums Victoria, Victoria, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6131-6418
  15. Teuku Reza Ferasyi

    Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
    Competing interests
    The authors declare that no competing interests exist.
  16. Shaoyuan Wu

    School of Life Sciences, Jiangsu Normal University, Jiangsu, China
    Competing interests
    The authors declare that no competing interests exist.
  17. Guinevere OU Wogan

    Museum of Vertebrate Zoology and Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Rauri CK Bowie

    Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8328-6021
  19. Frank E Rheindt

    Department of Biological Sciences, National University of Singapore, Singapore, Singapore
    For correspondence
    dbsrfe@nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8946-7085

Funding

Singapore Ministry of Education (R-154-000-A59-112)

  • Frank E Rheindt

Wildlife Reserved Singapore Conservation Fund (R-154-000-A99-592)

  • Frank E Rheindt

Croeni Foundation (R-154-000-A05-592)

  • Frank E Rheindt

SEABIG (R-154-000-648-646)

  • Balaji Chattopadhyay

SEABIG (R-154-000-648-733)

  • Balaji Chattopadhyay

University of Southampton research grant (511206105)

  • Kelvin S-H Peh

US National Science Foundation grant (DEB-1441652)

  • Rauri CK Bowie

US National Science Foundation grant (DEB-1457845)

  • Rauri CK Bowie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Gwee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,145
    views
  • 308
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chyi Yin Gwee
  2. Kritika M Garg
  3. Balaji Chattopadhyay
  4. Keren R Sadanandan
  5. Dewi M Prawiradilaga
  6. Martin Irestedt
  7. Fumin Lei
  8. Luke M Bloch
  9. Jessica GH Lee
  10. Mohammad Irham
  11. Tri Haryoko
  12. Malcolm CK Soh
  13. Kelvin S-H Peh
  14. Karen MC Rowe
  15. Teuku Reza Ferasyi
  16. Shaoyuan Wu
  17. Guinevere OU Wogan
  18. Rauri CK Bowie
  19. Frank E Rheindt
(2020)
Phylogenomics of white-eyes, a 'great speciator', reveals Indonesian archipelago as the center of lineage diversity
eLife 9:e62765.
https://doi.org/10.7554/eLife.62765

Share this article

https://doi.org/10.7554/eLife.62765

Further reading

    1. Evolutionary Biology
    Lucy A Winder, Mirre JP Simons, Terry Burke
    Research Article

    Life-history theory, central to our understanding of diversity in morphology, behaviour, and senescence, describes how traits evolve through the optimisation of trade-offs in investment. Despite considerable study, there is only minimal support for trade-offs within species between the two traits most closely linked to fitness – reproductive effort and survival – questioning the theory’s general validity. We used a meta-analysis to separate the effects of individual quality (positive survival/reproduction correlation) from the costs of reproduction (negative survival/reproduction correlation) using studies of reproductive effort and parental survival in birds. Experimental enlargement of brood size caused reduced parental survival. However, the effect size of brood size manipulation was small and opposite to the effect of phenotypic quality, as we found that individuals that naturally produced larger clutches also survived better. The opposite effects on parental survival in experimental and observational studies of reproductive effort provide the first meta-analytic evidence for theory suggesting that quality differences mask trade-offs. Fitness projections using the overall effect size revealed that reproduction presented negligible costs, except when reproductive effort was forced beyond the maximum level observed within species, to that seen between species. We conclude that there is little support for the most fundamental life-history trade-off, between reproductive effort and survival, operating within a population. We suggest that within species the fitness landscape of the reproduction–survival trade-off is flat until it reaches the boundaries of the between-species fast–slow life-history continuum. Our results provide a quantitative explanation as to why the costs of reproduction are not apparent and why variation in reproductive effort persists within species.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Gülnihal Kavaklioglu, Alexandra Podhornik ... Christian Seiser
    Research Article

    Repression of retrotransposition is crucial for the successful fitness of a mammalian organism. The domesticated transposon protein L1TD1, derived from LINE-1 (L1) ORF1p, is an RNA-binding protein that is expressed only in some cancers and early embryogenesis. In human embryonic stem cells, it is found to be essential for maintaining pluripotency. In cancer, L1TD1 expression is highly correlative with malignancy progression and as such considered a potential prognostic factor for tumors. However, its molecular role in cancer remains largely unknown. Our findings reveal that DNA hypomethylation induces the expression of L1TD1 in HAP1 human tumor cells. L1TD1 depletion significantly modulates both the proteome and transcriptome and thereby reduces cell viability. Notably, L1TD1 associates with L1 transcripts and interacts with L1 ORF1p protein, thereby facilitating L1 retrotransposition. Our data suggest that L1TD1 collaborates with its ancestral L1 ORF1p as an RNA chaperone, ensuring the efficient retrotransposition of L1 retrotransposons, rather than directly impacting the abundance of L1TD1 targets. In this way, L1TD1 might have an important role not only during early development but also in tumorigenesis.