The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception

  1. Andreas Strube  Is a corresponding author
  2. Michael Rose
  3. Sepideh Fazeli
  4. Christian Büchel  Is a corresponding author
  1. University Medical Center Hamburg-Eppendorf, Germany

Abstract

In the context of a generative model, such as predictive coding, pain and heat perception can be construed as the integration of expectation and input with their difference denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed an important role of the insula in such a model, but could not establish its temporal aspects. Here we employed electroencephalography to investigate neural representations of predictions and prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was associated with stimulus intensity expectation, followed by a negative modulation of gamma band activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory perception, which are associated with increased gamma band activity, but is in agreement with observations in working memory and word matching, which show gamma band activity for correct, rather than violated predictions.

Data availability

Data for this study are available on https://osf.io/f2mua/

The following data sets were generated

Article and author information

Author details

  1. Andreas Strube

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    a.strube@uke.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6545-0366
  2. Michael Rose

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Sepideh Fazeli

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian Büchel

    Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    For correspondence
    buechel@uke.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1965-906X

Funding

Deutsche Forschungsgemeinschaft (SFB 289)

  • Christian Büchel

Deutsche Forschungsgemeinschaft (SFB TR 169 project B3)

  • Michael Rose

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All volunteers gave their informed consent. The study was approved by the Ethics board of the Hamburg Medical Association (PV4745).

Copyright

© 2021, Strube et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,324
    views
  • 281
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas Strube
  2. Michael Rose
  3. Sepideh Fazeli
  4. Christian Büchel
(2021)
The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception
eLife 10:e62809.
https://doi.org/10.7554/eLife.62809

Share this article

https://doi.org/10.7554/eLife.62809

Further reading

    1. Neuroscience
    Zhujun Shao, Mengya Zhang, Qing Yu
    Research Article

    When holding visual information temporarily in working memory (WM), the neural representation of the memorandum is distributed across various cortical regions, including visual and frontal cortices. However, the role of stimulus representation in visual and frontal cortices during WM has been controversial. Here, we tested the hypothesis that stimulus representation persists in the frontal cortex to facilitate flexible control demands in WM. During functional MRI, participants flexibly switched between simple WM maintenance of visual stimulus or more complex rule-based categorization of maintained stimulus on a trial-by-trial basis. Our results demonstrated enhanced stimulus representation in the frontal cortex that tracked demands for active WM control and enhanced stimulus representation in the visual cortex that tracked demands for precise WM maintenance. This differential frontal stimulus representation traded off with the newly-generated category representation with varying control demands. Simulation using multi-module recurrent neural networks replicated human neural patterns when stimulus information was preserved for network readout. Altogether, these findings help reconcile the long-standing debate in WM research, and provide empirical and computational evidence that flexible stimulus representation in the frontal cortex during WM serves as a potential neural coding scheme to accommodate the ever-changing environment.

    1. Neuroscience
    Jacob A Miller
    Insight

    When navigating environments with changing rules, human brain circuits flexibly adapt how and where we retain information to help us achieve our immediate goals.