Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones

  1. Shehryar Ahmad
  2. Kara K Tsang
  3. Kartik Sachar
  4. Dennis Quentin
  5. Tahmid M Tashin
  6. Nathan P Bullen
  7. Stefan Raunser
  8. Andrew G McArthur
  9. Gerd Prehna  Is a corresponding author
  10. John C Whitney  Is a corresponding author
  1. McMaster University, Canada
  2. University of Manitoba, Canada
  3. Max Planck Institute of Molecular Physiology, Germany

Abstract

Type VI secretion systems (T6SSs) deliver antibacterial effector proteins between neighbouring bacteria. Many effectors harbor N-terminal transmembrane domains (TMDs) implicated in effector translocation across target cell membranes. However, the distribution of these TMD-containing effectors remains unknown. Here we discover prePAAR, a conserved motif found in over 6,000 putative TMD-containing effectors encoded predominantly by 15 genera of Proteobacteria. Based on differing numbers of TMDs, effectors group into two distinct classes that both require a member of the Eag family of T6SS chaperones for export. Co-crystal structures of class I and class II effector TMD-chaperone complexes from Salmonella Typhimurium and Pseudomonas aeruginosa, respectively, reveals that Eag chaperones mimic transmembrane helical packing to stabilize effector TMDs. In addition to participating in the chaperone-TMD interface, we find that prePAAR residues mediate effector-VgrG spike interactions. Taken together, our findings reveal mechanisms of chaperone-mediated stabilization and secretion of two distinct families of T6SS membrane protein effectors.

Data availability

X-ray diffraction data for the SciW, SciW:Rhs1 complex, and Tse6:EagT6 complex have been deposited in the PDB under the accession codes 6XRB, 6XRR and 6XRF, respectively.

Article and author information

Author details

  1. Shehryar Ahmad

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Kara K Tsang

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Kartik Sachar

    Microbiology, University of Manitoba, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Dennis Quentin

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3825-7066
  5. Tahmid M Tashin

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathan P Bullen

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Stefan Raunser

    Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9373-3016
  8. Andrew G McArthur

    M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Gerd Prehna

    Microbiology, University of Manitoba, Winnipeg, Canada
    For correspondence
    gerd.prehna@umanitoba.ca
    Competing interests
    The authors declare that no competing interests exist.
  10. John C Whitney

    Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
    For correspondence
    jwhitney@mcmaster.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4423-658X

Funding

Canadian Institutes of Health Research (PJT-156129)

  • John C Whitney

Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-05350)

  • John C Whitney

Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-04968)

  • Gerd Prehna

Canadian Institutes of Health Research (PJT156214)

  • Andrew G McArthur

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rajan Sankaranarayanan, CSIR-Centre for Cellular and Molecular Biology, India

Version history

  1. Received: September 4, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 15, 2020 (version 1)
  4. Accepted Manuscript updated: December 17, 2020 (version 2)
  5. Version of Record published: December 30, 2020 (version 3)

Copyright

© 2020, Ahmad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,050
    Page views
  • 478
    Downloads
  • 21
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shehryar Ahmad
  2. Kara K Tsang
  3. Kartik Sachar
  4. Dennis Quentin
  5. Tahmid M Tashin
  6. Nathan P Bullen
  7. Stefan Raunser
  8. Andrew G McArthur
  9. Gerd Prehna
  10. John C Whitney
(2020)
Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones
eLife 9:e62816.
https://doi.org/10.7554/eLife.62816

Share this article

https://doi.org/10.7554/eLife.62816

Further reading

    1. Microbiology and Infectious Disease
    Swati Jain, Gherman Uritskiy ... Venigalla B Rao
    Research Article

    A productive HIV-1 infection in humans is often established by transmission and propagation of a single transmitted/founder (T/F) virus, which then evolves into a complex mixture of variants during the lifetime of infection. An effective HIV-1 vaccine should elicit broad immune responses in order to block the entry of diverse T/F viruses. Currently, no such vaccine exists. An in-depth study of escape variants emerging under host immune pressure during very early stages of infection might provide insights into such a HIV-1 vaccine design. Here, in a rare longitudinal study involving HIV-1 infected individuals just days after infection in the absence of antiretroviral therapy, we discovered a remarkable genetic shift that resulted in near complete disappearance of the original T/F virus and appearance of a variant with H173Y mutation in the variable V2 domain of the HIV-1 envelope protein. This coincided with the disappearance of the first wave of strictly H173-specific antibodies and emergence of a second wave of Y173-specific antibodies with increased breadth. Structural analyses indicated conformational dynamism of the envelope protein which likely allowed selection of escape variants with a conformational switch in the V2 domain from an α-helix (H173) to a β-strand (Y173) and induction of broadly reactive antibody responses. This differential breadth due to a single mutational change was also recapitulated in a mouse model. Rationally designed combinatorial libraries containing 54 conformational variants of V2 domain around position 173 further demonstrated increased breadth of antibody responses elicited to diverse HIV-1 envelope proteins. These results offer new insights into designing broadly effective HIV-1 vaccines.

    1. Microbiology and Infectious Disease
    Markéta Častorálová, Jakub Sýs ... Tomas Ruml
    Research Article Updated

    For most retroviruses, including HIV, association with the plasma membrane (PM) promotes the assembly of immature particles, which occurs simultaneously with budding and maturation. In these viruses, maturation is initiated by oligomerization of polyprotein precursors. In contrast, several retroviruses, such as Mason-Pfizer monkey virus (M-PMV), assemble in the cytoplasm into immature particles that are transported across the PM. Therefore, protease activation and specific cleavage must not occur until the pre-assembled particle interacts with the PM. This interaction is triggered by a bipartite signal consisting of a cluster of basic residues in the matrix (MA) domain of Gag polyprotein and a myristoyl moiety N-terminally attached to MA. Here, we provide evidence that myristoyl exposure from the MA core and its insertion into the PM occurs in M-PMV. By a combination of experimental methods, we show that this results in a structural change at the C-terminus of MA allowing efficient cleavage of MA from the downstream region of Gag. This suggests that, in addition to the known effect of the myristoyl switch of HIV-1 MA on the multimerization state of Gag and particle assembly, the myristoyl switch may have a regulatory role in initiating sequential cleavage of M-PMV Gag in immature particles.