Abstract

Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labelling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Sequencing data have been deposited in GEO under accession codes GSE130251. External data analyzed has been listed in Supplementary File 6.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xiaochen Fan

    Embryology, CMRI, The University of Sydney, Sydney, Australia
    For correspondence
    x6fan@eng.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4316-0616
  2. V Pragathi Masamsetti

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jane QJ Sun

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Kasper Engholm-Keller

    Synapse Proteomics Group, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre Osteil

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Joshua Studdert

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark E Graham

    Synapse Proteomics, CMRI, The University of Sydney, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7290-1217
  8. Nicolas Fossat

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    For correspondence
    nfossat@sund.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick PL Tam

    Embryology Unit, CMRI, The University of Sydney, Westmead, Australia
    For correspondence
    PTam@cmri.org.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Health and Medical Research Council (1066832,1079160,1003100,1110751)

  • Mark E Graham
  • Patrick PL Tam

Australian Research Council (1094008)

  • Xiaochen Fan
  • Patrick PL Tam

University of Sydney

  • Xiaochen Fan

Children's Medical Research Institute

  • Xiaochen Fan
  • Pierre Osteil
  • Nicolas Fossat

Carlsbergfondet (CF15-1056,CF16-0066)

  • Kasper Engholm-Keller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentations were performed in compliance with animal ethics and welfare guidelines stipulated by the Children's Medical Research Institute/Children's Hospital at Westmead Animal Ethics Committee, protocol number C230.

Copyright

© 2021, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,107
    views
  • 500
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaochen Fan
  2. V Pragathi Masamsetti
  3. Jane QJ Sun
  4. Kasper Engholm-Keller
  5. Pierre Osteil
  6. Joshua Studdert
  7. Mark E Graham
  8. Nicolas Fossat
  9. Patrick PL Tam
(2021)
TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation
eLife 10:e62873.
https://doi.org/10.7554/eLife.62873

Share this article

https://doi.org/10.7554/eLife.62873

Further reading

    1. Cell Biology
    Yajun Zhai, Peiyi Liu ... Gongzheng Hu
    Research Article

    Discovering new strategies to combat the multidrug-resistant bacteria constitutes a major medical challenge of our time. Previously, artesunate (AS) has been reported to exert antibacterial enhancement activity in combination with β-lactam antibiotics via inhibition of the efflux pump AcrB. However, combination of AS and colistin (COL) revealed a weak synergistic effect against a limited number of strains, and few studies have further explored its possible mechanism of synergistic action. In this article, we found that AS and EDTA could strikingly enhance the antibacterial effects of COL against mcr-1- and mcr-1+ Salmonella strains either in vitro or in vivo, when used in triple combination. The excellent bacteriostatic effect was primarily related to the increased cell membrane damage, accumulation of toxic compounds and inhibition of MCR-1. The potential binding sites of AS to MCR-1 (THR283, SER284, and TYR287) were critical for its inhibition of MCR-1 activity. Additionally, we also demonstrated that the CheA of chemosensory system and virulence-related protein SpvD were critical for the bacteriostatic synergistic effects of the triple combination. Selectively targeting CheA, SpvD, or MCR using the natural compound AS could be further investigated as an attractive strategy for the treatment of Salmonella infection. Collectively, our work opens new avenues toward the potentiation of COL and reveals an alternative drug combination strategy to overcome COL-resistant bacterial infections.

    1. Cell Biology
    Tamás Visnovitz, Dorina Lenzinger ... Edit I Buzas
    Short Report

    Recent studies showed an unexpected complexity of extracellular vesicle (EV) biogenesis pathways. We previously found evidence that human colorectal cancer cells in vivo release large multivesicular body-like structures en bloc. Here, we tested whether this large EV type is unique to colorectal cancer cells. We found that all cell types we studied (including different cell lines and cells in their original tissue environment) released multivesicular large EVs (MV-lEVs). We also demonstrated that upon spontaneous rupture of the limiting membrane of the MV-lEVs, their intraluminal vesicles (ILVs) escaped to the extracellular environment by a ‘torn bag mechanism’. We proved that the MV-lEVs were released by ectocytosis of amphisomes (hence, we termed them amphiectosomes). Both ILVs of amphiectosomes and small EVs separated from conditioned media were either exclusively CD63 or LC3B positive. According to our model, upon fusion of multivesicular bodies with autophagosomes, fragments of the autophagosomal inner membrane curl up to form LC3B positive ILVs of amphisomes, while CD63 positive small EVs are of multivesicular body origin. Our data suggest a novel common release mechanism for small EVs, distinct from the exocytosis of multivesicular bodies or amphisomes, as well as the small ectosome release pathway.