TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation

Abstract

Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labelling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Sequencing data have been deposited in GEO under accession codes GSE130251. External data analyzed has been listed in Supplementary File 6.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Xiaochen Fan

    Embryology, CMRI, The University of Sydney, Sydney, Australia
    For correspondence
    x6fan@eng.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4316-0616
  2. V Pragathi Masamsetti

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Jane QJ Sun

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Kasper Engholm-Keller

    Synapse Proteomics Group, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Pierre Osteil

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Joshua Studdert

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark E Graham

    Synapse Proteomics, CMRI, The University of Sydney, Westmead, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7290-1217
  8. Nicolas Fossat

    Embryology Unit, CMRI, The University of Sydney, Sydney, Australia
    For correspondence
    nfossat@sund.ku.dk
    Competing interests
    The authors declare that no competing interests exist.
  9. Patrick PL Tam

    Embryology Unit, CMRI, The University of Sydney, Westmead, Australia
    For correspondence
    PTam@cmri.org.au
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Health and Medical Research Council (1066832,1079160,1003100,1110751)

  • Mark E Graham
  • Patrick PL Tam

Australian Research Council (1094008)

  • Xiaochen Fan
  • Patrick PL Tam

University of Sydney

  • Xiaochen Fan

Children's Medical Research Institute

  • Xiaochen Fan
  • Pierre Osteil
  • Nicolas Fossat

Carlsbergfondet (CF15-1056,CF16-0066)

  • Kasper Engholm-Keller

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentations were performed in compliance with animal ethics and welfare guidelines stipulated by the Children's Medical Research Institute/Children's Hospital at Westmead Animal Ethics Committee, protocol number C230.

Reviewing Editor

  1. Marianne E Bronner, California Institute of Technology, United States

Publication history

  1. Received: September 7, 2020
  2. Accepted: February 5, 2021
  3. Accepted Manuscript published: February 8, 2021 (version 1)
  4. Version of Record published: March 17, 2021 (version 2)

Copyright

© 2021, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,027
    Page views
  • 350
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaochen Fan
  2. V Pragathi Masamsetti
  3. Jane QJ Sun
  4. Kasper Engholm-Keller
  5. Pierre Osteil
  6. Joshua Studdert
  7. Mark E Graham
  8. Nicolas Fossat
  9. Patrick PL Tam
(2021)
TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation
eLife 10:e62873.
https://doi.org/10.7554/eLife.62873

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Morgan L Pimm et al.
    Research Article Updated

    Profilin-1 (PFN1) is a cytoskeletal protein that regulates the dynamics of actin and microtubule assembly. Thus, PFN1 is essential for the normal division, motility, and morphology of cells. Unfortunately, conventional fusion and direct labeling strategies compromise different facets of PFN1 function. As a consequence, the only methods used to determine known PFN1 functions have been indirect and often deduced in cell-free biochemical assays. We engineered and characterized two genetically encoded versions of tagged PFN1 that behave identical to each other and the tag-free protein. In biochemical assays purified proteins bind to phosphoinositide lipids, catalyze nucleotide exchange on actin monomers, stimulate formin-mediated actin filament assembly, and bound tubulin dimers (kD = 1.89 µM) to impact microtubule dynamics. In PFN1-deficient mammalian cells, Halo-PFN1 or mApple-PFN1 (mAp-PEN1) restored morphological and cytoskeletal functions. Titrations of self-labeling Halo-ligands were used to visualize molecules of PFN1. This approach combined with specific function-disrupting point-mutants (Y6D and R88E) revealed PFN1 bound to microtubules in live cells. Cells expressing the ALS-associated G118V disease variant did not associate with actin filaments or microtubules. Thus, these tagged PFN1s are reliable tools for studying the dynamic interactions of PFN1 with actin or microtubules in vitro as well as in important cell processes or disease-states.

    1. Cell Biology
    Lu Zhu et al.
    Research Article

    Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY-motif containing adaptor proteins. Several Arrestin-Related Trafficking adaptors (ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63 linked di-Ubiquitination by Rsp5. This modification enhances the PM recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the Pombe orthologs of Rsp5 and Art1, Pub1 and Any1. Further, we discover that the HECT domain exosite protects the K63 linked di-Ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment and activity of Rsp5 for the turnover of membrane proteins.