TWIST1 and chromatin regulatory proteins interact to guide neural crest cell differentiation
Abstract
Protein interaction is critical molecular regulatory activity underlining cellular functions and precise cell fate choices. Using TWIST1 BioID-proximity-labelling and network propagation analyses, we discovered and characterized a TWIST-chromatin regulatory module (TWIST1-CRM) in the neural crest cells (NCC). Combinatorial perturbation of core members of TWIST1-CRM: TWIST1, CHD7, CHD8, and WHSC1 in cell models and mouse embryos revealed that loss of the function of the regulatory module resulted in abnormal differentiation of NCCs and compromised craniofacial tissue patterning. Following NCC delamination, low level of TWIST1-CRM activity is instrumental to stabilize the early NCC signatures and migratory potential by repressing the neural stem cell programs. High level of TWIST1 module activity at later phases commits the cells to the ectomesenchyme. Our study further revealed the functional interdependency of TWIST1 and potential neurocristopathy factors in NCC development.
Data availability
All data generated or analyzed during this study are included in the manuscript and supporting files. Sequencing data have been deposited in GEO under accession codes GSE130251. External data analyzed has been listed in Supplementary File 6.
-
TWIST1 direct targets during embryonic stem cell differentiation [ChIP-seq]NCBI Gene Expression Omnibus, GSE130251.
-
Dissecting neural differentiation regulatory networks through epigenetic footprintingNCBI Gene Expression Omnibus, GSE62193.
-
AF22_H3K36me3NCBI Gene Expression Omnibus, GSM2902410.
-
Genome-wide maps of chromatin state during the differentiation of hESC into hNECs (ChIP-Seq)NCBI Gene Expression Omnibus, GSM1973975.
-
Transcription factors interfering with dedifferentiation induce direct conversionNCBI Gene Expression Omnibus, GSM1012189.
-
Selective influence of Sox2 on POU transcription factor binding in embryonic and neural stem cellsNCBI Gene Expression Omnibus, GSM1711445.
-
Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional ProgramsThe European Nucleotide Archive, ERS580651.
-
Spatio-temporal structure of cell fate decisions in murine neural crestNCBI Gene Expression Omnibus, GSE129114.
Article and author information
Author details
Funding
National Health and Medical Research Council (1066832,1079160,1003100,1110751)
- Mark E Graham
- Patrick PL Tam
Australian Research Council (1094008)
- Xiaochen Fan
- Patrick PL Tam
University of Sydney
- Xiaochen Fan
Children's Medical Research Institute
- Xiaochen Fan
- Pierre Osteil
- Nicolas Fossat
Carlsbergfondet (CF15-1056,CF16-0066)
- Kasper Engholm-Keller
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animal experimentations were performed in compliance with animal ethics and welfare guidelines stipulated by the Children's Medical Research Institute/Children's Hospital at Westmead Animal Ethics Committee, protocol number C230.
Copyright
© 2021, Fan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,065
- views
-
- 497
- downloads
-
- 33
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
A combination of intermittent fasting and administering Wnt3a proteins to a bone injury can rejuvenate bone repair in aged mice.
-
- Cell Biology
- Genetics and Genomics
Single-nucleus RNA sequencing (snRNA-seq), an alternative to single-cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying mouse adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.