Antagonism between killer yeast strains as an experimental model for biological nucleation dynamics

  1. Andrea Giometto  Is a corresponding author
  2. David R Nelson
  3. Andrew W Murray
  1. Cornell University, United States
  2. Harvard University, United States

Abstract

Antagonistic interactions are widespread in the microbial world and affect microbial evolutionary dynamics. Natural microbial communities often display spatial structure, which affects biological interactions, but much of what we know about microbial warfare comes from laboratory studies of well-mixed communities. To overcome this limitation, we manipulated two killer strains of the budding yeast Saccharomyces cerevisiae, expressing different toxins, to independently control the rate at which they released their toxins. We developed mathematical models that predict the experimental dynamics of competition between toxin-producing strains in both well-mixed and spatially structured populations. In both situations, we experimentally verified theory's prediction that a stronger antagonist can invade a weaker one only if the initial invading population exceeds a critical frequency or size. Finally, we found that toxin-resistant cells and weaker killers arose in spatially structured competitions between toxin-producing strains, suggesting that adaptive evolution can affect the outcome of microbial antagonism in spatial settings.

Data availability

All data are included in the manuscript and supporting files. All source code that generated figures and numerical results has been uploaded on GitHub at the URL: https://github.com/andreagiometto/Giometto_Nelson_Murray_2020. Source data files have been provided for all Figures displaying data.

Article and author information

Author details

  1. Andrea Giometto

    School of Civil and Environmental Engineering, Cornell University, Ithaca, United States
    For correspondence
    giometto@cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0544-6023
  2. David R Nelson

    Department of Physics, Harvard University, Cambridge, MA, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Andrew W Murray

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0868-6604

Funding

Swiss National Science Foundation (P2ELP2_168498)

  • Andrea Giometto

Swiss National Science Foundation (P400PB_180823)

  • Andrea Giometto

Human Frontier Science Program (RGP0041/2014)

  • David R Nelson
  • Andrew W Murray

National Science Foundation (1764269)

  • Andrew W Murray

Simons Foundation (594596)

  • Andrew W Murray

National Science Foundation (DMR1608501)

  • David R Nelson

Harvard Materials Science Research and Engineering Center (DMR-2011754)

  • David R Nelson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: September 9, 2020
  2. Preprint posted: September 10, 2020 (view preprint)
  3. Accepted: November 11, 2021
  4. Accepted Manuscript published: December 6, 2021 (version 1)
  5. Accepted Manuscript updated: December 6, 2021 (version 2)
  6. Version of Record published: January 5, 2022 (version 3)

Copyright

© 2021, Giometto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,352
    views
  • 204
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrea Giometto
  2. David R Nelson
  3. Andrew W Murray
(2021)
Antagonism between killer yeast strains as an experimental model for biological nucleation dynamics
eLife 10:e62932.
https://doi.org/10.7554/eLife.62932

Share this article

https://doi.org/10.7554/eLife.62932

Further reading

    1. Physics of Living Systems
    Achuthan Raja Venkatesh, Kathy H Le ... Onn Brandman
    Research Article

    While inhomogeneous diffusivity has been identified as a ubiquitous feature of the cellular interior, its implications for particle mobility and concentration at different length scales remain largely unexplored. In this work, we use agent-based simulations of diffusion to investigate how heterogeneous diffusivity affects the movement and concentration of diffusing particles. We propose that a nonequilibrium mode of membrane-less compartmentalization arising from the convergence of diffusive trajectories into low-diffusive sinks, which we call ‘diffusive lensing,’ is relevant for living systems. Our work highlights the phenomenon of diffusive lensing as a potentially key driver of mesoscale dynamics in the cytoplasm, with possible far-reaching implications for biochemical processes.

    1. Physics of Living Systems
    Maximilian Kurjahn, Antaran Deka ... Stefan Karpitschka
    Research Article

    Filamentous cyanobacteria are one of the oldest and today still most abundant lifeforms on earth, with manifold implications in ecology and economics. Their flexible filaments, often several hundred cells long, exhibit gliding motility in contact with solid surfaces. The underlying force generating mechanism is not yet understood. Here, we demonstrate that propulsion forces and friction coefficients are strongly coupled in the gliding motility of filamentous cyanobacteria. We directly measure their bending moduli using micropipette force sensors, and quantify propulsion and friction forces by analyzing their self-buckling behavior, complemented with analytical theory and simulations. The results indicate that slime extrusion unlikely generates the gliding forces, but support adhesion-based hypotheses, similar to the better-studied single-celled myxobacteria. The critical self-buckling lengths align well with the peaks of natural length distributions, indicating the importance of self-buckling for the organization of their collective in natural and artificial settings.