A unique multi-synaptic mechanism involving acetylcholine and GABA regulates dopamine release in the nucleus accumbens through early adolescence in male rats
Abstract
Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent stimulated dopamine release in male rats, as well as opposite effects of the a6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The a6-selective blocker, a-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this a6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of a6 nAChR and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at a6-containing nAChRs to drive inhibitory GABA tone on dopamine release.
Data availability
All data generated or analyzed for this study are available at Harvard dataverse (https://dataverse.harvard.edu/) under the title eLife_2024_Iacino_Ferris, or through the following link:https://doi.org/10.7910/DVN/8D2FJ0
-
eLife_2024_Iacino_FerrisHarvard Dataverse https://doi.org/10.7910/DVN/8D2FJ0.
Article and author information
Author details
Funding
National Institute on Drug Abuse (DA031791)
- Mark J Ferris
National Institute on Drug Abuse (DA006634)
- Mark J Ferris
National Institute on Alcohol Abuse and Alcoholism (AA026117)
- Mark J Ferris
National Institute on Alcohol Abuse and Alcoholism (AA028162)
- Elizabeth G Pitts
National Institute of General Medical Sciences (GM102773)
- Elizabeth G Pitts
Peter McManus Charitable Trust
- Mark J Ferris
National Institute on Drug Abuse (DA058517)
- Melody C Iacino
National Institute on Drug Abuse (DA052460)
- Mark J Ferris
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animals were maintained according to the National Institutes of Health guidelines in Association for Assessment and Accreditation of Laboratory Animal Care accredited facilities (Accreditation #: 00008; PHS Assurance #: D16-00248 (A3391-01)). All experimental protocols were approved by the Institutional Animal Care and Use Committee at Wake Forest School of Medicine (Protocol Approval #: A21-143).
Copyright
© 2024, Iacino et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 717
- views
-
- 138
- downloads
-
- 1
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
The formation of the mammalian brain requires regionalization and morphogenesis of the cranial neural plate, which transforms from an epithelial sheet into a closed tube that provides the structural foundation for neural patterning and circuit formation. Sonic hedgehog (SHH) signaling is important for cranial neural plate patterning and closure, but the transcriptional changes that give rise to the spatially regulated cell fates and behaviors that build the cranial neural tube have not been systematically analyzed. Here, we used single-cell RNA sequencing to generate an atlas of gene expression at six consecutive stages of cranial neural tube closure in the mouse embryo. Ordering transcriptional profiles relative to the major axes of gene expression predicted spatially regulated expression of 870 genes along the anterior-posterior and mediolateral axes of the cranial neural plate and reproduced known expression patterns with over 85% accuracy. Single-cell RNA sequencing of embryos with activated SHH signaling revealed distinct SHH-regulated transcriptional programs in the developing forebrain, midbrain, and hindbrain, suggesting a complex interplay between anterior-posterior and mediolateral patterning systems. These results define a spatiotemporally resolved map of gene expression during cranial neural tube closure and provide a resource for investigating the transcriptional events that drive early mammalian brain development.
-
- Developmental Biology
Hair follicle development is initiated by reciprocal molecular interactions between the placode-forming epithelium and the underlying mesenchyme. Cell fate transformation in dermal fibroblasts generates a cell niche for placode induction by activation of signaling pathways WNT, EDA, and FGF in the epithelium. These successive paracrine epithelial signals initiate dermal condensation in the underlying mesenchyme. Although epithelial signaling from the placode to mesenchyme is better described, little is known about primary mesenchymal signals resulting in placode induction. Using genetic approach in mice, we show that Meis2 expression in cells derived from the neural crest is critical for whisker formation and also for branching of trigeminal nerves. While whisker formation is independent of the trigeminal sensory innervation, MEIS2 in mesenchymal dermal cells orchestrates the initial steps of epithelial placode formation and subsequent dermal condensation. MEIS2 regulates the expression of transcription factor Foxd1, which is typical of pre-dermal condensation. However, deletion of Foxd1 does not affect whisker development. Overall, our data suggest an early role of mesenchymal MEIS2 during whisker formation and provide evidence that whiskers can normally develop in the absence of sensory innervation or Foxd1 expression.