Combinatorial deployment of F-actin regulators to build complex 3D actin structures in vivo

  1. Yi Xie
  2. Rashmi Budhathoki
  3. J Todd Blankenship  Is a corresponding author
  1. Department of Biological Sciences, University of Denver, United States
8 figures, 3 tables and 1 additional file

Figures

Figure 1 with 2 supplements
Rapid formation and dissolution of cortical actin cap structures.

(A) Still images from live-imaging of apical F-actin dynamics (UAS:moeABD:mCherry, cycle 11) at t = 0, 20, 90, 180, 270, 360, 540 s. Scale bar = 5 μm. (B) WT actin cap area dynamics from cycle 11 (measured cap n = 15, from embryo N = 4). Cap areas are normalized to the size at t = 0 s. Four different phases are labeled (Exp.: Expansion; Stab.: Stabilization; Elong.: Elongation; and Frag.: Fragmentation phases). (C) WT actin cap expansion rate from 30 s rolling window (cycle 11, n = 15, N = 4). Inset has y-axis re-scaled to visualize changes after expansion. (D) WT actin cap area (μm2) from cycle 11 at t = 0, 60, 120, 180, 240, 300, 360, 420, 480, 540 s (n = 15, N = 4). (E) WT actin cap area change in different phases (cycle 11, n = 15, N = 4). The values are calculated by the cap area at the end point divided by the area at the beginning of each phase. (F) Average WT actin cap area expansion rate (μm2/s) in different phases (cycle 11, n = 15, N = 4). (G) Average WT actin cap intensity (A.U.) from cycle 11 at t = 0, 60, 120, 180, 240, 300, 360, 420, 480, 540 s (n = 12, N = 3). (H) WT actin cap heterogeneity dynamics from cycle 11 (n = 15, N = 4). The heterogeneity is measured as the intensity standard deviation normalized to the value at t = 0 s. (I) WT actin cap heterogeneity from cycle 11 at t = 0, 60, 120, 180, 240, 300, 360, 420, 480, 540 s (n = 15, N = 4).

Figure 1—figure supplement 1
Similar actin labeling with different actin markers.

(A) Representative images from live-imaged mCh:MoesinABD (actin-binding domain of Moesin labeled with mCherry), live-imaged GFP:Act88F (Actin directly labeled with GFP) live-imaging, and fixed Phalloidin staining. Expansion (Exp.), stabilization (Stab.), elongation (Elong.), and fragmentation (Frag.) phases are shown. Scale bar = 5 μm. (B) Cap area comparison of mCh:MoeABD (n = 15, N = 4) and GFP:Act88F (n = 10, N = 3) at t = 0, 120, 180, 420, 540 s. ns: not significant. (C) Normalized cap area change of mCh:MoeABD (n = 15, N = 4) and GFP:Act88F (n = 10, N = 3) at 120 s. (D) Representative FRAP images from mCh:MoesinABD and GFP:Act88F at t = −1 s (1 s before photobleaching), 0 s (photobleaching), 12 s, and 32 s in cycle 11 caps during stabilization phase. Scale bar = 5 μm. (E, F) FRAP T50 and immobile fraction of different F-actin markers: mch:MoeABD (n = 6) and GFP:Act88F (n = 7) structures in cycle 11 caps at ~120 s.

Figure 1—figure supplement 2
WT area dynamics of cortical actin caps in cycle 10–13.

(A) Cycle 11 actin cap area dynamics (n = 15, N = 4) as the standard for analysis. n = 15, N = 4. Cap areas are normalized to the size at t = 0 s. Four different phases are labeled (Exp.: Expansion; Stab.: Stabilization; Elong.: Elongation; and Frag.: Fragmentation phases). (B–D) Cycle 10, cycle 12, and cycle 13 actin cap area dynamics. Cycle 10: n = 6, N = 2, measured every 15 s; cycle 12: n = 6, N = 2, measured every 20 s; cycle 13: n = 6, N = 2, measured every 25 s. Cap areas are normalized to t = 0 s at each cycle. (E–G) Examples of cycle 10, cycle 12, and cycle 13 caps during Expansion, Stabilization, Elongation, and Fragmentation phases. Scale bar = 5 µm.

Figure 2 with 1 supplement
Quantitative dynamics of Formin and Arp2/3-driven actin networks.

(A) Still images from live-imaging of apical F-actin dynamics (UAS:moeABD:mCherry, cycle 11) from control, Dia shRNA and ArpC4 shRNA lines at t = 20, 90, 180, 360, 540 s. Four different phases are labeled (Exp.: Expansion; Stab.: Stabilization; Elong.: Elongation; and Frag.: Fragmentation phases). Scale bar = 5 μm. (B) Still images showing F-actin cap intensities by live-imaging (UAS:moeABD:mCherry, cycle 11) from control, Dia shRNA and ArpC4 shRNA lines at t = 120 s. First three panels are leveled and imaged equivalently, with the last panel optimized for visualization. Scale bar = 5 μm. (C) Actin cap area dynamics of control (black, n = 15, N = 4), Dia shRNA (grey, n = 10, N = 3) and ArpC4 shRNA (red, n = 11, N = 3) from cycle 11. Cap areas are normalized to the size at t = 0 s. (D) Actin cap area (μm2) of control (n = 15, N = 4), Dia shRNA (n = 10, N = 3), and ArpC4 shRNA (n = 11, N = 3) at t = 120 s in cycle 11. *: p<0.05, ***: p<0.0005. (E) Actin cap area change of control (n = 15, N = 4), Dia shRNA (n = 10, N = 3), and ArpC4 shRNA (n = 11, N = 3) from t = 120 s to t = 0 s in cycle 11. ***: p<0.0005. (F) Average intensity of apical cap structures of control (n = 12, N = 3), Dia shRNA (n = 10, N = 3), and ArpC4 shRNA (n = 11, N = 3) at t = 120 s in cycle 11. *: p<0.05, ***: p<0.0005. (G) Actin cap area expansion rate of control (n = 15, N = 4), Dia shRNA (n = 10, N = 3), and ArpC4 shRNA (n = 11, N = 3) from 0 to 120 s in cycle 11. *: p<0.05, ***: p<0.0005. (H) Actin cap heterogeneity (intensity standard deviation) of control (n = 15, N = 4), Dia shRNA (n = 10, N = 3), and ArpC4 shRNA (n = 11, N = 3) at t = 120 s in cycle 11. ns: not significant, ***: p<0.0005.

Figure 2—figure supplement 1
Apical and furrow-associated actin populations in Dia or Arp2/3 compromised embryos.

(A) Cycle 11 apical cap and furrow actin distributions in Control, Dia shRNA and ArpC4 shRNA embryos at t = 120 s. Scale bar = 5 μm. Cap (0.9 μm below apical most layer) and furrow level (3.9 μm below apical most layer). (B, C) ArpC1:GFP in Diaphanous shRNA (B) or anti-Diaphanous antibody staining in ArpC4 shRNA. (D, E) Mean intensity box-and-whisker plot of indicated signals. ns: not significant. n > 10 in group. Scale bar = 5 μm.

Figure 3 with 1 supplement
ANRPs have distinct roles in building cortical actin structures.

(A) Schematics of different ANRPs domain organization. Domains are collected from Flybase (Pfam/SMART) and UniProt. WD40: WD40 repeats; CC: coiled-coil domain; Hs1/Cortactin: Hs1/Cortactin repeats; SH3: SH3 domain; PRD: proline-rich domain; WCA: WH2/verprolin, cofilin, acidic domains; LRR: Leucine-rich repeats; PH: pleckstrin homology domain; LLR: Leucine-rich repeats; C-terminal: Carmil c-terminal domain; DUF: domains of unknown function. Domain size is not to scale. (B) Cycle 11 apical actin cap area dynamics in control, Arp2/3, and ANRP disrupted embryos: control (black, n = 15, N = 4), DPod1 shRNA (green, n = 11, N = 3), Coronin shRNA (blue, n = 9, N = 3), Cortactin shRNA (red, n = 12, N = 3), Scar shRNA (orange, n = 11, N = 3), Carmil shRNA (grey, n = 9, N = 3), and ArpC4 shRNA (magenta, n = 11, N = 3). Cap areas are normalized to the size at t = 0 s. (C, D, F, H, J, L) Still images from live-imaging of apical F-actin dynamics (UAS:moeABD:mCh, cycle 11) at t = 180, 270, 360 s, from control (C), DPod1 shRNA (D), Coronin shRNA (F), Cortactin shRNA (H), Scar shRNA (J), and Carmil shRNA (L) embryos. Images are identically leveled and imaged. Scale bar = 5 μm. (E, G, I, K, M) Apical actin cap area dynamics (cycle 11) in control (black, n = 15, N = 4), DPod1 shRNA (green, n = 11, N = 3), Coronin shRNA (blue, n = 9, N = 3), Cortactin shRNA (red, n = 12, N = 3), Scar shRNA (orange, n = 11, N = 3), Carmil shRNA (gray, n = 9, N = 3), and ArpC4 shRNA (magenta, n = 11, N = 3). Cap areas are normalized to the size at t = 0 s. (E’, G’, I’, K’, M’) Absolute actin cap areas (μm2) in control and ANRP-compromised embryos from cycle 11 at indicated time points. *: p<0.05. (E’’, G’’, I’’, K’’, M’’) Actin cap average intensity in control and ANRP-compromised embryos from cycle 11 at indicated time points. *: p<0.05. Bar graphs without * labeled in (E’–E’’, G’–G’’, I’–I’’, K’–K’’, M’–M’’) are not significant. (N) Still images of endogenous CRISPR Arp3:GFP behavior in control and actin regulator disrupted embryos at t = 120 s in cycle 11. Scale bar = 5 μm. (O) CRISPR Arp3:GFP intensity in control and different actin regulators functional disruption embryos at t = 120 s in cycle 11. control: n = 13, N = 3; ArpC4 shRNA: n = 18, N = 3; DPod1 shRNA: n = 34, N = 3; Coronin shRNA: n = 30, N = 3; Scar shRNA: n = 24, N = 3; Cortactin shRNA: n = 27, N = 3; Dia shRNA: n = 28, N = 3. ns: not significant, *: p<0.05, **: p<0.005; ***: p<0.0005.

Figure 3—figure supplement 1
ANRPs have distinct roles in building apical actin structures.

(A, B, C, D, D’, F, F’, H) Still images from live-imaging of apical F-actin dynamics in cycle 11 at t = 180, 270, 360 s, from control (A), DPod1 shRNA (B), Coronin shRNA (C), DPod1 shRNA 2 (D–D’), Coronin shRNA 2 (F–F’), and Cortactin shRNA 2 (H). Images of (B) and (C) are the same images from Figure 3D and F but leveled optimally for visualization. Images of (D’) and (F’) are optimized leveled from (D) and (F). Other images are identically imaged and leveled as (A). Scale bar = 5 μm. (E, G, I) Absolute actin cap areas (μm2) of cycle 11 in control (black, n = 15, N = 4); DPod1 shRNA (dark green, n = 11, N = 3), DPod1 shRNA 2 (light green, n = 10, N = 3); Coronin shRNA (dark blue, n = 9, N = 3), Coronin shRNA 2 (light blue, n = 12, N = 3); Cortactin shRNA (red, n = 12, N = 3), Cortactin shRNA 2 (orange, n = 11, N = 3), respectively. (E’, G’, I’) Actin cap average intensity in control and ANRP- compromised embryos from cycle 11 at indicated time points: control (black, n = 15, N = 4); DPod1 shRNA (dark green, n = 11, N = 3), DPod1 shRNA 2 (light green, n = 10, N = 3); Coronin shRNA (dark blue, n = 9, N = 3), Coronin shRNA 2 (light blue, n = 12, N = 3); Cortactin shRNA (red, n = 12, N = 3), Cortactin shRNA 2 (orange, n = 11, N = 3). (J, L) Still images from live-imaging of apical F-actin dynamics in cycle 11 at t = 180, 270, 360 s from Wasp shRNA (J), and Wash shRNA (L). Images are identically leveled and imaged as (A). Scale bar = 5 μm. (K, M) Apical actin cap area dynamics (cycle 11) in control (black, n = 15, N = 4), Wasp shRNA (grey, n = 11, N = 3), and Wash shRNA (grey, n = 9, N = 3), respectively. Cap areas are normalized to the size at t = 0 s. (K’, M’) Absolute actin cap areas (μm2) in control, Wasp, and Wash-compromised embryos from cycle 11 at indicated time points. (K’’, M’’) Actin cap average intensity in control and ANRP-compromised embryos from cycle 11 at indicated time points. *: p<0.05. Bar graphs without * labeled in (K’–K’’, M’–M’’) are not significant.

Figure 4 with 1 supplement
ANRP localization at apical actin caps.

(A–E) Coronin (UAS:Coronin:GFP), Cortactin (UAS:GFP:Cortactin), DPod1 (UAS:DPod1:GFP), Scar (UAS:Scar:GFP), and Carmil (UAS:Carmil:GFP) localization on apical cap structures at t = 20, 180, 270, and 360 s. Additional Cortactin CRISPR and DPod1 CRISPR allele and anti-Coronin immunostaining data in Fig. Supplement 4-1. Scale bar = 5 μm. (F–H) Cortactin transitions to actin periphery through Coronin antagonism during cap growth. Overlapped images from t = 360 s (magenta) to t = 180 s (green) from live-imaging. Coronin (F) and Cortactin (H) images are derived from live-imaging of UAS:Coronin:GFP (F) and CRISPR GFP:Cortactin (Fig S6B), respectively. Scale bar = 2 μm. (J) CRISPR GFP:Cortactin t = 180 s (green) and 360 s (magenta) overlapped images in Coronin shRNA disrupted embryo. Scale bar = 2 μm. (G, I, K) Intensity profiles from (F), (H), and (J) yellow lines, respectively. Distance = 0 μm indicates the center of apical cap structures.

Figure 4—figure supplement 1
Expression levels and endogenous localization data of ANRPs.

(A, B) Still images from live-imaging of apical CRISPR Arp3:GFP (A) and CRISPR GFP:Cortactin (B) in cycle 11 at t = 20, 180, 270, 360 s. Scale bar = 3 μm. (C) Still images from live-imaging of apical CRISPR GFP:DPod1 in cycles 11–13. Scale bar = 10 μm. (D) Anti-Coronin (peptide antibody) staining of OreR (WT) and Coronin shRNA embryos in cycle 11 with phalloidin staining and merged channels. (E, F) Still images from live-imaging of apical Wasp:GFP (E) and Wash:GFP (F) in cycle 11 at t = 20, 180, 270, 360 s. Scale bar = 3 μm. (G) Actin regulators expression level during syncytial cycles by qPCR. Sqh (Myosin II regulatory light chain, MRLC) as positive control, and Rh3 (Rhodopsin 3) as negative control. The data are normalized to Wasp. DPod1, Coronin, Dia, Wasp, Scar, and Carml are tested by two independent sets of primers.

Figure 5 with 1 supplement
Arp2/3 and Formin network analysis suggests competition for free G-actin.

(A) Still images from FRAP recovery of F-actin live-imaging (UAS:moeABD:mCh) in cycle 11 embryos at t = −1s (1 s before photobleaching), 0 s (photobleaching), 4 s, 8 s, 12 s, 24 s, and 32 s. Scale bar = 5 μm. (B) FRAP recovery dynamics in control apical actin cap at cycle 11. Intensity is normalized to the value at t = −1s. (C, D) FRAP T50 and immobile fraction of F-actin at apical cap (n = 6) and furrow (n = 3) structures in cycle 11. (E, F) FRAP T50 and immobile fraction of F-actin at apical cap structures from control (n = 13), ArpC4 shRNA (n = 14), and Dia shRNA (n = 9) in cycle 11 embryos showing faster actin recovery rates in ArpC4 and Dia shRNA embryos. ns: not significant, ***: p<0.005. (G) Schematic of Arp2/3 and Dia competition for limited G-actin pool.

Figure 5—figure supplement 1
FRAP on Arp2/3 and ANRPs disrupted embryos.

(A, B) FRAP T50 and immobile fraction of F-actin in control and indicated actin regulator compromised embryos in cycle 11. ns: not significant, *: p<0.05, **: p<0.005, ***: p<0.0005. Control: n = 13; ArpC4 shRNA: n = 14; Dia shRNA: n = 9; DPod1 shRNA: n = 9; Cortactin shRNA: n = 8; Coronin shRNA: n = 8; Scar shRNA: n = 7 (C, D) FRAP T50 and immobile fraction of F-actin in control (n = 13), Latrunculin B (LatB) (n = 9), and Jasplakinolide (Jasp) injected embryos (n = 8), or performed in ArpC4 shRNA embryos (n = 9) and ArpC4 shRNA with Jasp injection (n = 8). (E) Individual FRAP representative examples in the indicated backgrounds. *: p<0.05, ***: p<0.0005.

Figure 6 with 1 supplement
In vivo nucleator recruitment strengths of actin regulatory proteins.

(A, C, E, G, I, K, M) Images of CRISPR Arp3:GFP with mito-tagged mCherry control (A) or mCherry:ANRPs (C, E, G, I, K, M) in cells at stage 12. Scale bar = 3 μm. (B, D, F, H, J, L, N) Intensity line plots of CRISPR Arp3:GFP and different mito-ANRP measured from yellow dashed lines in (A, C, E, G, I, K, M). (O) Percent of Arp3:GFP-positive compartments that colocalize with mito-ANRP puncta. Mito-control tag (no ANRP): n = 150; N = 4; DPod1: n = 338, N = 6; Cortactin: n = 198, N = 3; Coronin: n = 80, N = 4; Scar: n = 74, N = 6; Coro + Cort: n = 28, N = 4; DPod1 + Scar: n = 282, N = 4. Similar data trends were observed after calculation of Pearson correlation coefficients with Mito-control tag (no ANRP): r = −0.036 ± 0.025; DPod1: r = 0.625 ± 0.033; Cortactin: r = 0.492 ± 0.039; Coronin: r = 0.234 ± 0.028; Scar: r = 0.313 ± 0.024; Coro + Cort: r = 0.0231 ± 0.012; DPod1 + Scar: r = 0.551 ± 0.020. Reported Pearson values are (mean) ± (standard error of mean). (P) Arp3 recruitment ability (normalized GFP:mCherry intensity ratio in Arp3:GFP-positive mito-ANRP compartments) by mito-tagged DPod1, Cortactin, Coronin, and Scar. DPod1: n = 26, N = 3; Cortactin: n = 29, N = 3; Coronin: n = 27, N = 4; Scar: n = 40, N = 3; Coro + Cort: n = 25, N = 4; DPod1 +Scar: n = 46, N = 5.

Figure 6—figure supplement 1
Mito-tagged ANRPs can direct F-actin polymerization.

(A) Still images of mitochondrial morphology from YFP:mito in stage 12 embryo. Scale bar = 1 μm. (B–E) Staining images of CRISPR Arp3:GFP (anti-GFP) with mito-tagged mCherry:ANRPs (anti-dsRed) and F-actin (Phalloidin) in cells at stage 12. (F) Control staining images of CRISPR Arp3:GFP (anti-GFP) with mCherry-tagged mitochondrial marker (anti-dsRed) and F-actin (Phalloidin) in cells at stage 12. Main merge panel is two-way merge between Arp3:GFP and mito:mCh, inset is three-way merge between all channels. Scale bar = 1 μm.

Requirement for filamentous actin cap ANRP function in anchoring embryonic nuclei.

(A) Nuclei (marked by Histone:RFP) lose apical anchorage and fall into the embryonic interior in ArpC4 shRNA embryos during cycle 12 at t = 0 s, 90 s, 180 s, 270 s, and 540 s. Medial z-layer (−5 μm from apical most portion of embryo) indicates plane of normal nuclear positioning, and basal layer (−10 μm) images are shown. Asterisk, arrowhead, and arrow indicate individual falling-out nuclei. Scale bar = 5 μm. (B) Correlation of nuclear fallout rates to cap area expansion rates (t = 0–120 s) in indicated backgrounds (cycle 13 embryos). (C) Correlation of nuclear fallout rates to average actin cap intensities (t = 120 s) in indicated backgrounds (cycle 13 embryos). (B, C) Control (n > 12, N > 3), Dia shRNA (n = 10, N = 3), ArpC4 shRNA (n = 11, N = 3), DPod1 shRNA (n = 11, N = 3), Coronin shRNA (n = 9, N = 3), Cortactin shRNA (n = 12, N = 3), Scar shRNA (n = 11, N = 3), and Carmil shRNA (n = 9, N = 3). Dashed lines indicate linear regression fitting. P: Pearson’s correlation coefficient, R2: coefficient of determination.

Author response image 1

Tables

Table 1
Arp2/3 and ANRPs toolkit.
ConstructVectorChromosome
CRISPR Arp3:GFPEndogeousIII
CRISPR GFP:CortactinEndogeousIII
CRISPR GFP:DPod1EndogeousX
UAS:GFP:CortactinpUASTX, II, III
UAS:Cortactin:GFPpUAST,pUASpX, II, III
UAS:mCherry:CortactinpUASpII, III
UAS:DPod1:GFPpUASTX, II, III
UAS:Coronin:GFPpUASTII, III
UAS:GFP:Carmil FLpUASTX, II, III
UAS:Carmil FL:GFPpUASTX, II, III
UAS:Scar:GFPpUASpII, III
UAS:mito:mCherry:CortactinpUASpII, III
UAS:mito:mCherry:CoroninpUASpX, II, III
UAS:mito:mCherry:DPod1pUASpII, III
UAS:mito:mCherry:ScarpUASpII, III
UAS:mito:mCherrypUASpII, III
Table 2
Stocks and genetics.
StocksSourceIdentifier
General stocks
P[mat-tub-Gal4] mat67D. St Johnston
P[mat-tub-Gal4] mat15D. St Johnston
UAS:mCherry:MoesinABDT. Millard
Histone:RFPBDSCBDSC 23650 III; BDSC
23651 II
UAS:GFP:Act88FBDSCBDSC #9253
Wasp:sGFPVDRCVDRC #318474
Wash:GFPBDSCBDSC #81644
YFP:mitoBDSCBDSC #7194
UAS:mCh:mitoOMMBDSCBDSC #66532, 66533
nos-Cas9BestgeneNIG-FLY #CAS-0001, CAS-0003
w1118Bestgene
shRNA (Valium) lines
ArpC4 shRNADRSC/TRiPBDSC #41888
Dia shRNADRSC/TRiPBDSC #35479
DPod1 shRNADRSC/TRiPBDSC #41705
Coronin shRNADRSC/TRiPBDSC #40841
Cortactin shRNADRSC/TRiPBDSC #44425
Carmil shRNADRSC/TRiPBDSC #41686
Scar shRNADRSC/TRiPBDSC #51803
Wasp shRNADRSC/TRiPBDSC #51802
Wash shRNADRSC/TRiPBDSC #62866
Cofilin shRNADRSC/TRiPBDSC #33670
DPod1 shRNA 2VDRC/KKVDRC #108886
Coronin shRNA 2VDRC/KKVDRC #109644
Cortactin shRNA 2VDRC/KKVDRC #105289
Table 3
Reagents.
ReagentSourceIdentifier
Antibodies and dyes
Rabbit anti-GFPInvitrogenA11122
Mouse anti-dsRedClontech632393
Alexa Fluor Goat anti rabbit 488InvitrogenA11034
Alexa Fluor Goat anti mouse 568InvitrogenA11031
Alexa 568-PhalloidinInvitrogenCat# A12380
Alexa 647-PhalloidinInvitrogenCat# A22287
Rabbit anti-DiaWasserman lab
Chemicals and kits
Halocarbon oil 27Cat# H8773
Halocarbon oil 700Cat# H8898
ParaformaldehydeElectron Microscopy SciencesCat# 15714
ProLong GoldInvitrogenCat# P36931
JasplakinolideSanta Cruz BiotechCat# sc202191
Latrunculin BSigmaCat# L5288
QIAShredderQIAGENCat# 79654
Quick-RNA MicroPrepZymo ResearchCat# R1050
QuantiTech Reverse Transcription KitQIAGENCat# 205310
QuantiTech SYBR Green RT-PCRQIAGENCat# 204141
Q5 site-directed mutagenesis
EZNA insect DNA kit
NEB
Omega Biotek
Cat# E0554S
Cat# D0926-01
Software
iQ5Bio-Radbio-rad.com
FIJI/ImageJSchindelin et al., 2012Fiji.sc
Micromanager 1.4Edelstein et al., 2014micro-manager.org
OriginProOriginLaboriginlab.com
PhotoshopAdobeadobe.com
IllustratorAdobeadobe.com
Peptides and oligonucleotides
Coronin peptide for antibodyGenScriptCLPAKKAGNILNKPR
TOM70-HAS. Munro lab
qPCR primers
Sqh(MRLC)QuantiTectCat# QT00499065
Rh3QuantiTectCat# QT00978481
DPod1 set1QuantiTectCat# QT00499464
DPod1 set2Eurofins5′-TCCTCACCAAGAACCACTGC
Eurofins5′-GTGGGTGGGAACAGATCGTC
Coronin set1QuantiTectCat# QT00940737
Coronin set2Eurofins5′-ACAGGCTTCAACCGTAGCTC
Eurofins5′-GAACATTACGCCGTTGGACG
Cortactin set1QuantiTectCat# QT00979020
Cortactin set2Eurofins5′-TTCGGAGTGCAAGAGGATCG
Eurofins5′-GCACTCCAAATTTGCCTCCG
Arp14DQuantiTectCat# QT00923419
ArpC1(sop2)QuantiTectCat# QT00936222
Dia set1QuantiTectCat# QT00939477
Dia set2Eurofins5′-CAAATCGAAGGAGGAGCGACA
Eurofins5′-CCCATTCTGCAGGTATTCCAC
Wasp set1QuantiTectCat# QT00984641
Wasp set2Eurofins5′-ATGGCATGGAGGTGGTCAAG
Eurofins5′-TTACGCGTCTCTATGGTGGC
Scar set1QuantiTectCat# QT00934584
Scar set2Eurofins5′-ACGATCCATAGAACCCGTGC
Eurofins5′-GGCGAATGATGTTCGTCAGC
Carmil set1Eurofins5′-CCACTGGTGGGTCGTAAGTC
Eurofins5′-GGCATAGACGTCTCCTCAGC
Carmil set2Eurofins5′-GCTGAGGAGACGTCTATGCC
Eurofins5′-ATAACACTACCCTCGCCTGC
WashEurofins5′-GCGTAGGAAGAGTGTGGGAC
Eurofins5′-GTGATGGAATTGCGCTCGTC
Guide RNAs for CRISPR
Arp3:GFP
chiRNA1Eurofins5′-CTTCGCTATCAGGTGTGTCACACGA
Eurofins5′-AAACTCGTGTGACACACCTGATAGC
chiRNA2Eurofins5′-CTTCGCCAGTTCAACCCCCTATCTA
Eurofins5′-AAACTAGATAGGGGGTTGAACTGGC
GFP:Cortactin
chiRNA1Eurofins5′-CTTCGGGGCCGACAAAGCCGGATC
Eurofins5′-AAACGATCCGGCTTTGTCGGCCCC
chiRNA2Eurofins5′-CTTCGGTGGCCTGAATCTGGTGAC
Eurofins5′-AAACGTCACCAGATTCAGGCCACC
GFP:DPod1
chiRNA1Eurofins5′-CTTCGAGCGACTGAGAGGGAGCCAC
Eurofins5′-AAACGTGGCTCCCTCTCAGTCGCTC
chiRNA2Eurofins5′-CTTCGCGATGTTGTTACCGTACGTC
Eurofins5′-AAACGACGTACGGTAACAACATCGC
DPod1 mutated PAM sites in homologous constructsThis study5′-CCACCGGACTAGTGACACTCGAC
5′-GCAGCGCACAACTGACACTCGAC
This study5′-GTGGGCAGCTACCAGACGTACGG
5′-GTGGGCAGTTATCAAACCTATGG

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yi Xie
  2. Rashmi Budhathoki
  3. J Todd Blankenship
(2021)
Combinatorial deployment of F-actin regulators to build complex 3D actin structures in vivo
eLife 10:e63046.
https://doi.org/10.7554/eLife.63046