A transcriptomic taxonomy of Drosophila circadian neurons around the clock
Abstract
Many different functions are regulated by circadian rhythms, including those orchestrated by discrete clock neurons within animal brains. To comprehensively characterize and assign cell identity to the 75 pairs of Drosophila circadian neurons, we optimized a single cell RNA sequencing method and assayed clock neuron gene expression at different times of day. The data identify at least 17 clock neuron categories with striking spatial regulation of gene expression. Transcription factor regulation is prominent and likely contributes to the robust circadian oscillation of many transcripts, including those that encode cell-surface proteins previously shown to be important for cell recognition and synapse formation during development. The many other clock-regulated genes also constitute an important resource for future mechanistic and functional studies between clock neurons and/or for temporal signaling to circuits elsewhere in the fly brain.
Data availability
The single-cell RNA sequencing data has been deposited in GEO under the accession code GSE157504.
-
A transcriptomic taxonomy of Drosophila circadian neurons around the clockNCBI Gene Expression Omnibus, GSE157504.
Article and author information
Author details
Funding
Howard Hughes Medical Institute
- Dingbang Ma
- Dariusz Przybylski
- Katharine C Abruzzi
- Matthias Schlichting
- Qunlong Li
- Xi Long
- Michael Rosbash
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2021, Ma et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,965
- views
-
- 853
- downloads
-
- 115
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 115
- citations for umbrella DOI https://doi.org/10.7554/eLife.63056