A transcriptomic taxonomy of Drosophila circadian neurons around the clock

  1. Dingbang Ma
  2. Dariusz Przybylski
  3. Katharine C Abruzzi
  4. Matthias Schlichting
  5. Qunlong Li
  6. Xi Long
  7. Michael Rosbash  Is a corresponding author
  1. Howard Hughes Medical Institute, Brandeis University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Many different functions are regulated by circadian rhythms, including those orchestrated by discrete clock neurons within animal brains. To comprehensively characterize and assign cell identity to the 75 pairs of Drosophila circadian neurons, we optimized a single cell RNA sequencing method and assayed clock neuron gene expression at different times of day. The data identify at least 17 clock neuron categories with striking spatial regulation of gene expression. Transcription factor regulation is prominent and likely contributes to the robust circadian oscillation of many transcripts, including those that encode cell-surface proteins previously shown to be important for cell recognition and synapse formation during development. The many other clock-regulated genes also constitute an important resource for future mechanistic and functional studies between clock neurons and/or for temporal signaling to circuits elsewhere in the fly brain.

Data availability

The single-cell RNA sequencing data has been deposited in GEO under the accession code GSE157504.

The following data sets were generated

Article and author information

Author details

  1. Dingbang Ma

    Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5575-7604
  2. Dariusz Przybylski

    Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Katharine C Abruzzi

    Department of Biology, National Center of Behavioral Genomics, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3949-3095
  4. Matthias Schlichting

    Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0822-0265
  5. Qunlong Li

    Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Xi Long

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0268-8641
  7. Michael Rosbash

    Department of Biology, Howard Hughes Medical Institute, Brandeis University, Waltham, United States
    For correspondence
    rosbash@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3366-1780

Funding

Howard Hughes Medical Institute

  • Dingbang Ma
  • Dariusz Przybylski
  • Katharine C Abruzzi
  • Matthias Schlichting
  • Qunlong Li
  • Xi Long
  • Michael Rosbash

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Amita Sehgal, Howard Hughes Medical Institute, University of Pennsylvania, United States

Version history

  1. Received: September 13, 2020
  2. Accepted: January 11, 2021
  3. Accepted Manuscript published: January 13, 2021 (version 1)
  4. Version of Record published: January 26, 2021 (version 2)

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,840
    views
  • 756
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dingbang Ma
  2. Dariusz Przybylski
  3. Katharine C Abruzzi
  4. Matthias Schlichting
  5. Qunlong Li
  6. Xi Long
  7. Michael Rosbash
(2021)
A transcriptomic taxonomy of Drosophila circadian neurons around the clock
eLife 10:e63056.
https://doi.org/10.7554/eLife.63056

Share this article

https://doi.org/10.7554/eLife.63056

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.