Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis

  1. Hanumanthu BD Prasada Rao
  2. Takeshi Sato
  3. Kiran Challa
  4. Yurika Fujita
  5. Miki Shinohara
  6. Akira Shinohara  Is a corresponding author
  1. National Institute for Animal Biotechnology, India
  2. Kyoto Pharmaceutical University, Japan
  3. Osaka University, Japan

Abstract

During meiosis, protein ensembles in the nuclear envelope (NE) containing SUN- and KASH-domain proteins, called linker nucleocytoskeleton and cytoskeleton (LINC) complex, promote the chromosome motion. Yeast SUN-domain protein, Mps3, forms multiple meiosis-specific ensembles on NE, which show dynamic localisation for chromosome motion; however, the mechanism by which these Mps3 ensembles are formed during meiosis remains largely unknown. Here, we showed that the cyclin-dependent protein kinase (CDK) and Dbf4-dependent Cdc7 protein kinase (DDK) regulate meiosis-specific dynamics of Mps3 on NE, particularly by mediating the resolution of Mps3 clusters and telomere clustering. We also found that the luminal region of Mps3 juxtaposed to the inner nuclear membrane is required for meiosis-specific localisation of Mps3 on NE. Negative charges introduced by meiosis-specific phosphorylation in the luminal region of Mps3 alter its interaction with negatively charged lipids by electric repulsion in reconstituted liposomes. Phospho-mimetic substitution in the luminal region suppresses the localisation of Mps3 via the inactivation of CDK or DDK. Our study revealed multi-layered phosphorylation-dependent regulation of the localisation of Mps3 on NE for meiotic chromosome motion and NE remodelling.

Data availability

The numerical data in all Figures (graphs) are provided in Source data. Original blots and gels are provided in Source data.

Article and author information

Author details

  1. Hanumanthu BD Prasada Rao

    National Institute for Animal Biotechnology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Takeshi Sato

    Pharmaceutical education, Kyoto Pharmaceutical University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Kiran Challa

    Osaka University, Suita/Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yurika Fujita

    Osaka University, Suita/Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Miki Shinohara

    Integrated protein functions, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Akira Shinohara

    Osaka University, Suita/Osaka, Japan
    For correspondence
    ashino@protein.osaka-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4207-8247

Funding

Japan Society for the Promotion of Science (2212500,22125002,15H05973,16H04742,19H00981)

  • Akira Shinohara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Prasada Rao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,080
    views
  • 183
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanumanthu BD Prasada Rao
  2. Takeshi Sato
  3. Kiran Challa
  4. Yurika Fujita
  5. Miki Shinohara
  6. Akira Shinohara
(2021)
Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis
eLife 10:e63119.
https://doi.org/10.7554/eLife.63119

Share this article

https://doi.org/10.7554/eLife.63119

Further reading

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.