Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis

  1. Hanumanthu BD Prasada Rao
  2. Takeshi Sato
  3. Kiran Challa
  4. Yurika Fujita
  5. Miki Shinohara
  6. Akira Shinohara  Is a corresponding author
  1. National Institute for Animal Biotechnology, India
  2. Kyoto Pharmaceutical University, Japan
  3. Osaka University, Japan

Abstract

During meiosis, protein ensembles in the nuclear envelope (NE) containing SUN- and KASH-domain proteins, called linker nucleocytoskeleton and cytoskeleton (LINC) complex, promote the chromosome motion. Yeast SUN-domain protein, Mps3, forms multiple meiosis-specific ensembles on NE, which show dynamic localisation for chromosome motion; however, the mechanism by which these Mps3 ensembles are formed during meiosis remains largely unknown. Here, we showed that the cyclin-dependent protein kinase (CDK) and Dbf4-dependent Cdc7 protein kinase (DDK) regulate meiosis-specific dynamics of Mps3 on NE, particularly by mediating the resolution of Mps3 clusters and telomere clustering. We also found that the luminal region of Mps3 juxtaposed to the inner nuclear membrane is required for meiosis-specific localisation of Mps3 on NE. Negative charges introduced by meiosis-specific phosphorylation in the luminal region of Mps3 alter its interaction with negatively charged lipids by electric repulsion in reconstituted liposomes. Phospho-mimetic substitution in the luminal region suppresses the localisation of Mps3 via the inactivation of CDK or DDK. Our study revealed multi-layered phosphorylation-dependent regulation of the localisation of Mps3 on NE for meiotic chromosome motion and NE remodelling.

Data availability

The numerical data in all Figures (graphs) are provided in Source data. Original blots and gels are provided in Source data.

Article and author information

Author details

  1. Hanumanthu BD Prasada Rao

    National Institute for Animal Biotechnology, Hyderabad, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Takeshi Sato

    Pharmaceutical education, Kyoto Pharmaceutical University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Kiran Challa

    Osaka University, Suita/Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yurika Fujita

    Osaka University, Suita/Osaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Miki Shinohara

    Integrated protein functions, Osaka University, Suita, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Akira Shinohara

    Osaka University, Suita/Osaka, Japan
    For correspondence
    ashino@protein.osaka-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4207-8247

Funding

Japan Society for the Promotion of Science (2212500,22125002,15H05973,16H04742,19H00981)

  • Akira Shinohara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adèle L Marston, University of Edinburgh, United Kingdom

Publication history

  1. Preprint posted: September 15, 2020 (view preprint)
  2. Received: September 15, 2020
  3. Accepted: September 26, 2021
  4. Accepted Manuscript published: September 29, 2021 (version 1)
  5. Version of Record published: November 5, 2021 (version 2)

Copyright

© 2021, Prasada Rao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 630
    Page views
  • 122
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hanumanthu BD Prasada Rao
  2. Takeshi Sato
  3. Kiran Challa
  4. Yurika Fujita
  5. Miki Shinohara
  6. Akira Shinohara
(2021)
Phosphorylation of luminal region of the SUN-domain protein Mps3 promotes nuclear envelope localization during meiosis
eLife 10:e63119.
https://doi.org/10.7554/eLife.63119

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Bretta Hixson et al.
    Tools and Resources Updated

    Mosquitoes transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate explorations of mosquito biology, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, hindgut), and a gut time course of blood meal digestion. Using Aegypti-Atlas, we provide insights into regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior midgut possess digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential induction and repression/depletion of multiple cohorts of peptidases. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by holotricin and gambicin, which are expressed in carcass and digestive tissues, respectively, in a mutually exclusive manner. In the midgut, gambicin and other effectors are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits hallmarks of immune tolerance. Finally, in a cross-species comparison between Ae. aegypti and Anopheles gambiae midguts, we observe that regional digestive and immune specializations are conserved, indicating that our dataset may be broadly relevant to multiple mosquito species. We demonstrate that the expression of orthologous genes is highly correlated, with the exception of a ‘species signature’ comprising a few highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Bethany Sump et al.
    Research Article

    For some inducible genes, the rate and molecular mechanism of transcriptional activation depends on the prior experiences of the cell. This phenomenon, called epigenetic transcriptional memory, accelerates reactivation and requires both changes in chromatin structure and recruitment of poised RNA Polymerase II (RNAPII) to the promoter. Memory of inositol starvation in budding yeast involves a positive feedback loop between transcription factor-dependent interaction with the nuclear pore complex and histone H3 lysine 4 dimethylation (H3K4me2). While H3K4me2 is essential for recruitment of RNAPII and faster reactivation, RNAPII is not required for H3K4me2. Unlike RNAPII-dependent H3K4me2 associated with transcription, RNAPII-independent H3K4me2 requires Nup100, SET3C, the Leo1 subunit of the Paf1 complex and, upon degradation of an essential transcription factor, is inherited through multiple cell cycles. The writer of this mark (COMPASS) physically interacts with the potential reader (SET3C), suggesting a molecular mechanism for the spreading and re-incorporation of H3K4me2 following DNA replication.