Sexual dimorphism in trait variability and its eco-evolutionary and statistical implications

  1. Susanne RK Zajitschek  Is a corresponding author
  2. Felix Zajitschek
  3. Bonduriansky Russell
  4. Robert C Brooks
  5. Will Cornwell
  6. Daniel S Falster
  7. Malgorzata Lagisz
  8. Jeremy Mason
  9. Alistair M Senior
  10. Daniel AW Noble
  11. Shinichi Nakagawa  Is a corresponding author
  1. Liverpool John Moores University, United Kingdom
  2. University of New South Wales, Australia
  3. European Bioinformatics Institute, United Kingdom
  4. University of Sydney, Australia
  5. Australian National University, Australia

Abstract

Biomedical and clinical sciences are experiencing a renewed interest in the fact that males and females differ in many anatomic, physiological, and behavioral traits. Sex differences in trait variability, however, are yet to receive similar recognition. In medical science, mammalian females are assumed to have higher trait variability due to estrous cycles (the 'estrus-mediated variability hypothesis'); historically in biomedical research, females have been excluded for this reason. Contrastingly, evolutionary theory and associated data support the 'greater male variability hypothesis'. Here, we test these competing hypotheses in 218 traits measured in >26,900 mice, using meta-analysis methods. Neither hypothesis could universally explain patterns in trait variability. Sex-bias in variability was trait-dependent. While greater male variability was found in morphological traits, females were much more variable in immunological traits. Sex-specific variability has eco-evolutionary ramifications including sex-dependent responses to climate change, as well as statistical implications including power analysis considering sex difference in variance.

Data availability

Data Availability: - The code and data generated during this study are freely accessible on github. [https://github.com/itchyshin/mice_sex_diff], as well as OSF [https://osf.io/25h4t/] - Original/source data (pre-cleaned dataset as downloaded from IMPC) can be downloaded from zenodo [DOI:10.5281/zenodo.3759701] - The supporting files also contain the full code workflow

Article and author information

Author details

  1. Susanne RK Zajitschek

    School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
    For correspondence
    susi.zajitschek@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4676-9950
  2. Felix Zajitschek

    BEES, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6010-6112
  3. Bonduriansky Russell

    BEES, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert C Brooks

    BEES, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Will Cornwell

    Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel S Falster

    Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Malgorzata Lagisz

    BEES, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Jeremy Mason

    European Bioinformatics Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Alistair M Senior

    School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9805-7280
  10. Daniel AW Noble

    Research School of Biology, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Shinichi Nakagawa

    School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
    For correspondence
    s.nakagawa@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7765-5182

Funding

Australian Research Council (DP180100818)

  • Shinichi Nakagawa

NIH Common Fund (UM1-H G006370)

  • Jeremy Mason

Australian Research Council Fellowship (DE180101520)

  • Alistair M Senior

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Rosalyn Gloag, University of Sidney, Australia

Version history

  1. Received: September 16, 2020
  2. Accepted: October 30, 2020
  3. Accepted Manuscript published: November 17, 2020 (version 1)
  4. Version of Record published: November 30, 2020 (version 2)

Copyright

© 2020, Zajitschek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,959
    views
  • 400
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susanne RK Zajitschek
  2. Felix Zajitschek
  3. Bonduriansky Russell
  4. Robert C Brooks
  5. Will Cornwell
  6. Daniel S Falster
  7. Malgorzata Lagisz
  8. Jeremy Mason
  9. Alistair M Senior
  10. Daniel AW Noble
  11. Shinichi Nakagawa
(2020)
Sexual dimorphism in trait variability and its eco-evolutionary and statistical implications
eLife 9:e63170.
https://doi.org/10.7554/eLife.63170

Share this article

https://doi.org/10.7554/eLife.63170

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.