SlitC-PlexinA1 mediates iterative inhibition for orderly passage of spinal commissural axons through the floor plate

  1. Hugo Ducuing
  2. Thibault Gardette
  3. Aurora Pignata
  4. Karine Kindbeiter
  5. Muriel Bozon
  6. Olivier Thoumine
  7. Céline Delloye-Bourgeois
  8. Servane Tauszig-Delamasure
  9. Valerie Castellani  Is a corresponding author
  1. Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, France
  2. University of Bordeaux, France

Abstract

Spinal commissural axon navigation across the midline in the floor plate requires repulsive forces from local Slit repellents. The long-held view is that Slits push growth cones forward and prevent them from turning back once they became sensitized to these cues after midline crossing. We analyzed with fluorescent reporters Slits distribution and FP glia morphology. We observed clusters of Slit-N and Slit-C fragments decorating a complex architecture of glial basal process ramifications. We found that PC2 proprotein convertase activity contributes to this ligands pattern. Next, we studied Slit-C acting via PlexinA1 receptor shared with another FP repellent, the Semaphorin3B, through generation of a mouse model baring PlexinA1Y1815F mutation abrogating SlitC but not Sema3B responsiveness, manipulations in the chicken embryo and ex vivo live imaging. This revealed a guidance mechanism by which SlitC constantly limits growth cone exploration, imposing ordered and forward-directed progression through aligned corridors formed by FP basal ramifications.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for figures.

Article and author information

Author details

  1. Hugo Ducuing

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Thibault Gardette

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Aurora Pignata

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Karine Kindbeiter

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Muriel Bozon

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Olivier Thoumine

    Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8041-1349
  7. Céline Delloye-Bourgeois

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Servane Tauszig-Delamasure

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4926-0199
  9. Valerie Castellani

    Institut NeuroMyoGène - CNRS UMR 5310 - INSERM U1217 de Lyon- UCBL Lyon 1, Lyon, France
    For correspondence
    valerie.castellani@univ-lyon1.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9623-9312

Funding

Agence Nationale de la Recherche (ANR-11-IDEX-0007)

  • Valerie Castellani

Fondation pour la Recherche Médicale (Label team)

  • Valerie Castellani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paola Bovolenta, CSIC-UAM, Spain

Version history

  1. Received: September 17, 2020
  2. Accepted: December 18, 2020
  3. Accepted Manuscript published: December 21, 2020 (version 1)
  4. Version of Record published: December 31, 2020 (version 2)

Copyright

© 2020, Ducuing et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 856
    views
  • 133
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hugo Ducuing
  2. Thibault Gardette
  3. Aurora Pignata
  4. Karine Kindbeiter
  5. Muriel Bozon
  6. Olivier Thoumine
  7. Céline Delloye-Bourgeois
  8. Servane Tauszig-Delamasure
  9. Valerie Castellani
(2020)
SlitC-PlexinA1 mediates iterative inhibition for orderly passage of spinal commissural axons through the floor plate
eLife 9:e63205.
https://doi.org/10.7554/eLife.63205

Share this article

https://doi.org/10.7554/eLife.63205

Further reading

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.

    1. Developmental Biology
    2. Neuroscience
    Kristine B Walhovd, Stine K Krogsrud ... Didac Vidal-Pineiro
    Research Article

    Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4–82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.