Action detection using a neural network elucidates the genetics of mouse grooming behavior
Abstract
Automated detection of complex animal behaviors remains a challenging problem in neuroscience, particularly for behaviors that consist of disparate sequential motions. Grooming is a prototypical stereotyped behavior and is often used as an endophenotype in psychiatric genetics. Here, we used mouse grooming behavior as an example and developed a general purpose neural network architecture capable of dynamic action detection at human observer-level performance and operating across dozens of mouse strains with high visual diversity. We provide insights into the amount of human annotated training data that are needed to achieve such performance. We surveyed grooming behavior in the open field in 2,457 mice across 62 strains, determined its heritable components, conducted GWAS to outline its genetic architecture, and performed PheWAS to link human psychiatric traits through shared underlying genetics. Our general machine learning solution that automatically classifies complex behaviors in large datasets will facilitate systematic studies of behavioral mechanisms.
Data availability
The all machine learning datasets are available here: https://www.kumarlab.org/2021/03/11/grooming-behavioral-data/ The code is available here: https://github.com/KumarLabJax/MouseGrooming Behavioral data has been deposited into Mouse Phenome Database. The access for this data will be https://mpdpreview.jax.org/projects/Project1051
Article and author information
Author details
Funding
Jackson Laboratory Director's Innovation Fund
- Vivek Kumar
National Institutes of Health (DA041668)
- Vivek Kumar
National Institutes of Health (DA048634)
- Vivek Kumar
National Science Foundation (TG-DBS170004)
- Vivek Kumar
Brain and Behavioral Foundation
- Vivek Kumar
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All studies were performed in accordance with approved protocols from The Jackson Laboratory Institutional Animal Care and Use Committee guidelines (Animal Protocol Number 14010).
Copyright
© 2021, Geuther et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,658
- views
-
- 577
- downloads
-
- 54
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 54
- citations for umbrella DOI https://doi.org/10.7554/eLife.63207