Hormone-sensitive lipase couples intergenerational sterol metabolism to reproductive success

  1. Christoph Heier  Is a corresponding author
  2. Oskar Knittelfelder
  3. Harald F Hofbauer
  4. Wolfgang Mende
  5. Ingrid Pörnbacher
  6. Laura Schiller
  7. Gabriele Schoiswohl
  8. Hao Xie
  9. Sebastian Grönke
  10. Andrej Shevchenko
  11. Ronald P Kühnlein
  1. University of Graz, Austria
  2. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  3. Max Planck Institute for Biology of Ageing, Germany

Abstract

Triacylglycerol (TG) and steryl ester (SE) lipid storage is a universal strategy to maintain organismal energy and membrane homeostasis. Cycles of building and mobilizing storage fat are fundamental in (re)distributing lipid substrates between tissues or to progress ontogenetic transitions. In this study we show that Hormone-sensitive lipase (Hsl) specifically controls SE mobilization to initiate intergenerational sterol transfer in Drosophila melanogaster. Tissue-autonomous Hsl functions in the maternal fat body and germline coordinately prevent adult SE overstorage and maximize sterol allocation to embryos. While Hsl-deficiency is largely dispensable for normal development on sterol-rich diets, animals depend on adipocyte Hsl for optimal fecundity when dietary sterol becomes limiting. Notably, accumulation of SE but not of TG is a characteristic of Hsl-deficient cells across phyla including murine white adipocytes. In summary, we identified Hsl as an ancestral regulator of SE degradation, which improves intergenerational sterol transfer and reproductive success in flies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Christoph Heier

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    For correspondence
    christoph.heier@uni-graz.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6858-408X
  2. Oskar Knittelfelder

    Shevchenko lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1565-7238
  3. Harald F Hofbauer

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2617-5901
  4. Wolfgang Mende

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Ingrid Pörnbacher

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Schiller

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Gabriele Schoiswohl

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Hao Xie

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Grönke

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1539-5346
  10. Andrej Shevchenko

    Shevchenko lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5079-1109
  11. Ronald P Kühnlein

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.

Funding

Austrian Science Fund (P28882-B21)

  • Gabriele Schoiswohl

Deutsche Forschungsgemeinschaft (FOR 2682)

  • Andrej Shevchenko

Deutsche Forschungsgemeinschaft (TRR83 (TP17))

  • Andrej Shevchenko

Austrian Science Fund (M 2706-B34)

  • Ingrid Pörnbacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: All animal protocols were approved by the Austrian Federal Ministry for Science, Research, and Economy (protocol number BMWFW-66.007/0026/-WF/V/3b/2017) and the ethics committee of the University of Graz, and were conducted in compliance with the council of Europe Convention (ETS 123).

Version history

  1. Received: September 28, 2020
  2. Accepted: February 3, 2021
  3. Accepted Manuscript published: February 4, 2021 (version 1)
  4. Version of Record published: February 12, 2021 (version 2)

Copyright

© 2021, Heier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,007
    views
  • 286
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christoph Heier
  2. Oskar Knittelfelder
  3. Harald F Hofbauer
  4. Wolfgang Mende
  5. Ingrid Pörnbacher
  6. Laura Schiller
  7. Gabriele Schoiswohl
  8. Hao Xie
  9. Sebastian Grönke
  10. Andrej Shevchenko
  11. Ronald P Kühnlein
(2021)
Hormone-sensitive lipase couples intergenerational sterol metabolism to reproductive success
eLife 10:e63252.
https://doi.org/10.7554/eLife.63252

Share this article

https://doi.org/10.7554/eLife.63252

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.