Hormone-sensitive lipase couples intergenerational sterol metabolism to reproductive success

  1. Christoph Heier  Is a corresponding author
  2. Oskar Knittelfelder
  3. Harald F Hofbauer
  4. Wolfgang Mende
  5. Ingrid Pörnbacher
  6. Laura Schiller
  7. Gabriele Schoiswohl
  8. Hao Xie
  9. Sebastian Grönke
  10. Andrej Shevchenko
  11. Ronald P Kühnlein
  1. University of Graz, Austria
  2. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  3. Max Planck Institute for Biology of Ageing, Germany

Abstract

Triacylglycerol (TG) and steryl ester (SE) lipid storage is a universal strategy to maintain organismal energy and membrane homeostasis. Cycles of building and mobilizing storage fat are fundamental in (re)distributing lipid substrates between tissues or to progress ontogenetic transitions. In this study we show that Hormone-sensitive lipase (Hsl) specifically controls SE mobilization to initiate intergenerational sterol transfer in Drosophila melanogaster. Tissue-autonomous Hsl functions in the maternal fat body and germline coordinately prevent adult SE overstorage and maximize sterol allocation to embryos. While Hsl-deficiency is largely dispensable for normal development on sterol-rich diets, animals depend on adipocyte Hsl for optimal fecundity when dietary sterol becomes limiting. Notably, accumulation of SE but not of TG is a characteristic of Hsl-deficient cells across phyla including murine white adipocytes. In summary, we identified Hsl as an ancestral regulator of SE degradation, which improves intergenerational sterol transfer and reproductive success in flies.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Christoph Heier

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    For correspondence
    christoph.heier@uni-graz.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6858-408X
  2. Oskar Knittelfelder

    Shevchenko lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1565-7238
  3. Harald F Hofbauer

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2617-5901
  4. Wolfgang Mende

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Ingrid Pörnbacher

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Laura Schiller

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Gabriele Schoiswohl

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Hao Xie

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Grönke

    Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1539-5346
  10. Andrej Shevchenko

    Shevchenko lab, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5079-1109
  11. Ronald P Kühnlein

    Institute of Molecular Biosciences, University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.

Funding

Austrian Science Fund (P28882-B21)

  • Gabriele Schoiswohl

Deutsche Forschungsgemeinschaft (FOR 2682)

  • Andrej Shevchenko

Deutsche Forschungsgemeinschaft (TRR83 (TP17))

  • Andrej Shevchenko

Austrian Science Fund (M 2706-B34)

  • Ingrid Pörnbacher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols were approved by the Austrian Federal Ministry for Science, Research, and Economy (protocol number BMWFW-66.007/0026/-WF/V/3b/2017) and the ethics committee of the University of Graz, and were conducted in compliance with the council of Europe Convention (ETS 123).

Copyright

© 2021, Heier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,218
    views
  • 314
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christoph Heier
  2. Oskar Knittelfelder
  3. Harald F Hofbauer
  4. Wolfgang Mende
  5. Ingrid Pörnbacher
  6. Laura Schiller
  7. Gabriele Schoiswohl
  8. Hao Xie
  9. Sebastian Grönke
  10. Andrej Shevchenko
  11. Ronald P Kühnlein
(2021)
Hormone-sensitive lipase couples intergenerational sterol metabolism to reproductive success
eLife 10:e63252.
https://doi.org/10.7554/eLife.63252

Share this article

https://doi.org/10.7554/eLife.63252

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.