Nano-scale architecture of blood-brain barrier tight-junctions

  1. Esther Sasson
  2. Shira Anzi
  3. Batia Bell
  4. Oren Yakovian Mr.
  5. Meshi Zorsky
  6. Urban Deutsch
  7. Britta Engelhardt
  8. Eilon Sherman
  9. Gad Vatine
  10. Ron Dzikowski
  11. Ayal Ben-Zvi  Is a corresponding author
  1. Hebrew University of Jerusalem, Israel
  2. Ben-Gurion University of the Negev, Israel
  3. University of Bern, Switzerland

Abstract

Tight junctions (TJs) between blood-brain barrier (BBB) endothelial cells construct a robust physical barrier, whose damage underlies BBB dysfunctions related to several neurodegenerative diseases. What makes these highly specialized BBB-TJs extremely restrictive remains unknown. Here, we use super-resolution microscopy (dSTORM) to uncover new structural and functional properties of BBB TJs. Focusing on three major components, Nano-scale resolution revealed sparse (occludin) vs. clustered (ZO1/claudin-5) molecular architecture. In mouse development, permeable TJs become first restrictive to large molecules, and only later to small molecules, with claudin-5 proteins arrangement compacting during this maturation process. Mechanistically, we reveal that ZO1 clustering is independent of claudin-5 in-vivo. In contrast to accepted knowledge, we found that in the developmental context, total levels of claudin-5 inversely correlate with TJ functionality. Our super-resolution studies provide a unique perspective of BBB TJs and open new directions for understanding TJ functionality in biological barriers, ultimately enabling restoration in disease or modulation for drug delivery.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Tiff and ND2 images and CSV files for STORM imaging are available in deposited archive at EBI (BioStudies accession number S-BSST744). Any additional images of interest or different image formats could be provided upon request to the corresponding author

The following data sets were generated

Article and author information

Author details

  1. Esther Sasson

    Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Shira Anzi

    Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Batia Bell

    Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Oren Yakovian Mr.

    Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Meshi Zorsky

    Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Urban Deutsch

    Theodor Kocher Institute, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Britta Engelhardt

    Theodor Kocher Institute, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Eilon Sherman

    Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Gad Vatine

    Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Ron Dzikowski

    Department of Microbiology and Molecular Genetics, Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  11. Ayal Ben-Zvi

    Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    ayalb@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4012-7789

Funding

Israel Science Foundation (1882/16)

  • Ayal Ben-Zvi

Israel Science Foundation (2402/16)

  • Ayal Ben-Zvi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were treated according to institutional guidelines approved by the Institutional Animal Care and Use Committee (IACUC) at Hebrew University (Protocol #MD-15-14449-4).

Copyright

© 2021, Sasson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,037
    views
  • 492
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Esther Sasson
  2. Shira Anzi
  3. Batia Bell
  4. Oren Yakovian Mr.
  5. Meshi Zorsky
  6. Urban Deutsch
  7. Britta Engelhardt
  8. Eilon Sherman
  9. Gad Vatine
  10. Ron Dzikowski
  11. Ayal Ben-Zvi
(2021)
Nano-scale architecture of blood-brain barrier tight-junctions
eLife 10:e63253.
https://doi.org/10.7554/eLife.63253

Share this article

https://doi.org/10.7554/eLife.63253

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).