Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states

  1. Rahul Chadda
  2. Nathan Bernhardt
  3. Elizabeth G Kelley
  4. Susana C M Teixeira
  5. Kacie Griffith
  6. Alejandro Gil-Ley
  7. Tuğba N Öztürk
  8. Lauren E Hughes
  9. Ana Forsythe
  10. Venkatramanan Krishnamani
  11. José D Faraldo-Gómez  Is a corresponding author
  12. Janice L Robertson  Is a corresponding author
  1. Washington University in St Louis, United States
  2. National Heart, Lung and Blood Institute, National Institutes of Health, United States
  3. National Institute for Standards and Technology, United States
  4. University of Delaware, United States
  5. Carver College of Medicine, The University of Iowa, United States

Abstract

Over two-thirds of integral membrane proteins of known structure assemble into oligomers. Yet, the forces that drive the association of these proteins remain to be delineated, as the lipid bilayer is a solvent environment that is both structurally and chemically complex. In this study we reveal how the lipid solvent defines the dimerization equilibrium of the CLC-ec1 Cl-/H+ antiporter. Integrating experimental and computational approaches, we show that monomers associate to avoid a thinned-membrane defect formed by hydrophobic mismatch at their exposed dimerization interfaces. In this defect, lipids are strongly tilted and less densely packed than in the bulk, with a larger degree of entanglement between opposing leaflets and greater water penetration into the bilayer interior. Dimerization restores the membrane to a near-native state and therefore, appears to be driven by the larger free-energy cost of lipid solvation of the dissociated protomers. Supporting this theory, we demonstrate that addition of short-chain lipids strongly shifts the dimerization equilibrium towards the monomeric state, and show that the cause of this effect is that these lipids preferentially solvate the defect. Importantly, we show that this shift requires only minimal quantities of short-chain lipids, with no measurable impact on either the macroscopic physical state of the membrane or the protein's biological function. Based on these observations, we posit that free-energy differentials for local lipid solvation define membrane-protein association equilibria. With this, we argue that preferential lipid solvation is a plausible cellular mechanism for lipid regulation of oligomerization processes, as it can occur at low concentrations and does not require global changes in membrane properties.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-6.

Article and author information

Author details

  1. Rahul Chadda

    Department of Biochemistry & Molecular Biophysics, Washington University in St Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  2. Nathan Bernhardt

    Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  3. Elizabeth G Kelley

    Center for Neutron Research, National Institute for Standards and Technology, Gaithersburg, United States
    Competing interests
    No competing interests declared.
  4. Susana C M Teixeira

    Chemical and Biomolecular Engineering, University of Delaware, Newark, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6603-7936
  5. Kacie Griffith

    Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  6. Alejandro Gil-Ley

    Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    No competing interests declared.
  7. Tuğba N Öztürk

    Department of Biochemistry & Molecular Biophysics, Washington University in St Louis, St. Louis, United States
    Competing interests
    No competing interests declared.
  8. Lauren E Hughes

    Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  9. Ana Forsythe

    Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  10. Venkatramanan Krishnamani

    Molecular Physiology and Biophysics, Carver College of Medicine, The University of Iowa, Iowa City, United States
    Competing interests
    No competing interests declared.
  11. José D Faraldo-Gómez

    Theoretical Molecular Biophysics Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
    For correspondence
    jfg4wrk@gmail.com
    Competing interests
    José D Faraldo-Gómez, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7224-7676
  12. Janice L Robertson

    Department of Biochemistry & Molecular Biophysics, Washington University in St Louis, St. Louis, United States
    For correspondence
    janice.robertson@wustl.edu
    Competing interests
    Janice L Robertson, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5499-9943

Funding

National Institute of General Medical Sciences (R01GM120260)

  • Janice L Robertson

National Institute of General Medical Sciences (R21GM126476)

  • Janice L Robertson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,856
    views
  • 495
    downloads
  • 43
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rahul Chadda
  2. Nathan Bernhardt
  3. Elizabeth G Kelley
  4. Susana C M Teixeira
  5. Kacie Griffith
  6. Alejandro Gil-Ley
  7. Tuğba N Öztürk
  8. Lauren E Hughes
  9. Ana Forsythe
  10. Venkatramanan Krishnamani
  11. José D Faraldo-Gómez
  12. Janice L Robertson
(2021)
Membrane transporter dimerization driven by differential lipid solvation energetics of dissociated and associated states
eLife 10:e63288.
https://doi.org/10.7554/eLife.63288

Share this article

https://doi.org/10.7554/eLife.63288

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.