Structural basis for human TRPC5 channel inhibition by two distinct inhibitors

Abstract

TRPC5 channel is a non-selective cation channel that participates diverse physiological processes. TRPC5 inhibitors show promise in the treatment of anxiety disorder, depression and kidney disease. However, the binding sites and inhibitory mechanism of TRPC5 inhibitors remain elusive. Here we present the cryo-EM structures of human TRPC5 in complex with two distinct inhibitors, namely clemizole and HC-070, to the resolution of 2.7 Å. The structures reveal that clemizole binds inside the voltage sensor-like domain of each subunit. In contrast, HC-070 is wedged between adjacent subunits and replaces the glycerol group of a putative DAG molecule near the extracellular side. Moreover, we found mutations in the inhibitor binding pockets altered the potency of inhibitors. These structures suggest that both clemizole and HC-070 exert the inhibitory functions by stabilizing the ion channel in a non-conductive closed state. These results pave the way for further design and optimization of inhibitors targeting human TRPC5.

Data availability

The density maps of hTRPC5 have been deposited to the Electron Microscopy Data Bank (EMDB) under the accession number: EMD-30987 for apo hTRPC5, EMD-30575 for CMZ-bound hTRPC5 and EMD-30576 for HC-070-bound hTRPC5. Coordinates of atomic model have been deposited in the Protein Data Bank (PDB) under the accession number: 7E4T for apo hTRPC5, 7D4P for CMZ-bound hTRPC5 and 7D4Q for HC-070-bound hTRPC5.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kangcheng Song

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Miao Wei

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenjun Guo

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Quan

    Institute of Molecular Medicine, Peking University, Beijjing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yunlu Kang

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Jing-Xiang Wu

    Institute of Molecular Medicine, Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9851-0065
  7. Lei Chen

    Institute of Molecular Medicine, Peking University, Beijjing, China
    For correspondence
    chenlei2016@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7619-8311

Funding

National Key Research and Development Program of China (2016YFA0502004)

  • Lei Chen

National Natural Science Foundation of China (91957201,31870833,31821091)

  • Lei Chen

National Natural Science Foundation of China (31900859)

  • Jing-Xiang Wu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Randy B Stockbridge, University of Michigan, United States

Publication history

  1. Received: September 24, 2020
  2. Accepted: March 5, 2021
  3. Accepted Manuscript published: March 8, 2021 (version 1)
  4. Version of Record published: March 22, 2021 (version 2)

Copyright

© 2021, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,194
    Page views
  • 576
    Downloads
  • 24
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kangcheng Song
  2. Miao Wei
  3. Wenjun Guo
  4. Li Quan
  5. Yunlu Kang
  6. Jing-Xiang Wu
  7. Lei Chen
(2021)
Structural basis for human TRPC5 channel inhibition by two distinct inhibitors
eLife 10:e63429.
https://doi.org/10.7554/eLife.63429

Further reading

    1. Structural Biology and Molecular Biophysics
    Shreyas Bhat, Ali El-Kasaby ... Walter Sandtner
    Research Article Updated

    The serotonin transporter (SERT/SLC6A4) is arguably the most extensively studied solute carrier (SLC). During its eponymous action – that is, the retrieval of serotonin from the extracellular space – SERT undergoes a conformational cycle. Typical inhibitors (antidepressant drugs and cocaine), partial and full substrates (amphetamines and their derivatives), and atypical inhibitors (ibogaine analogues) bind preferentially to different states in this cycle. This results in competitive or non-competitive transport inhibition. Here, we explored the action of N-formyl-1,3-bis (3,4-methylenedioxyphenyl)-prop-2-yl-amine (ECSI#6) on SERT: inhibition of serotonin uptake by ECSI#6 was enhanced with increasing serotonin concentration. Conversely, the KM for serotonin was lowered by augmenting ECSI#6. ECSI#6 bound with low affinity to the outward-facing state of SERT but with increased affinity to a potassium-bound state. Electrophysiological recordings showed that ECSI#6 preferentially interacted with the inward-facing state. Kinetic modeling recapitulated the experimental data and verified that uncompetitive inhibition arose from preferential binding of ECSI#6 to the K+-bound, inward-facing conformation of SERT. This binding mode predicted a pharmacochaperoning action of ECSI#6, which was confirmed by examining its effect on the folding-deficient mutant SERT-PG601,602AA: preincubation of HEK293 cells with ECSI#6 restored export of SERT-PG601,602AA from the endoplasmic reticulum and substrate transport. Similarly, in transgenic flies, the administration of ECSI#6 promoted the delivery of SERT-PG601,602AA to the presynaptic specialization of serotonergic neurons. To the best of our knowledge, ECSI#6 is the first example of an uncompetitive SLC inhibitor. Pharmacochaperones endowed with the binding mode of ECSI#6 are attractive, because they can rescue misfolded transporters at concentrations, which cause modest transport inhibition.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jiemin Shen, Azaan Saalim Wilbon ... Yaping Pan
    Research Article Updated

    Ferroportin (Fpn) is a transporter that releases ferrous ion (Fe2+) from cells and is important for homeostasis of iron in circulation. Export of one Fe2+ by Fpn is coupled to import of two H+ to maintain charge balance. Here, we show that human Fpn (HsFpn) binds to and mediates Ca2+ transport. We determine the structure of Ca2+-bound HsFpn and identify a single Ca2+ binding site distinct from the Fe2+ binding sites. Further studies validate the Ca2+ binding site and show that Ca2+ transport is not coupled to transport of another ion. In addition, Ca2+ transport is significantly inhibited in the presence of Fe2+ but not vice versa. Function of Fpn as a Ca2+ uniporter may allow regulation of iron homeostasis by Ca2+.