Tendon and motor phenotypes in the Crtap-/- mouse model of recessive Osteogenesis Imperfecta

  1. Matthew William Grol  Is a corresponding author
  2. Nele A Haelterman
  3. Joohyun Lim
  4. Elda M Munivez
  5. Marilyn Archer
  6. David M Hudson
  7. Sara F Tufa
  8. Douglas R Keene
  9. Kevin Lei
  10. Dongsu Park
  11. Cole D Kuzawa
  12. Catherine G Ambrose
  13. David R Eyre
  14. Brendan H Lee  Is a corresponding author
  1. University of Western Ontario, Canada
  2. Baylor College of Medicine, United States
  3. University of Washington, United States
  4. Shriners Hospital for Children, United States
  5. The University of Texas Health Sciences Center at Houston, United States

Abstract

Osteogenesis imperfecta (OI) is characterized by short stature, skeletal deformities, low bone mass, and motor deficits. A subset of OI patients also present with joint hypermobility; however, the role of tendon dysfunction in OI pathogenesis is largely unknown. Using the Crtap-/- mouse model of severe, recessive OI, we found that mutant Achilles and patellar tendons were thinner and weaker with increased collagen cross-links and reduced collagen fibril size at 1- and 4-months compared to wildtype. Patellar tendons from Crtap-/- mice also had altered numbers of CD146+CD200+ and CD146-CD200+ progenitor-like cells at skeletal maturity. RNA-seq analysis of Achilles and patellar tendons from 1-month Crtap-/- mice revealed dysregulation in matrix and tendon marker gene expression concomitant with predicted alterations in TGF-b, inflammatory, and metabolic signaling. At 4-months, Crtap-/- mice showed increased aSMA, MMP2, and phospho-NFkB in the patellar tendon consistent with excess matrix remodeling and tissue inflammation. Finally, a series of behavioral tests showed severe motor impairments and reduced grip strength in 4-month Crtap-/- mice – a phenotype that correlates with the tendon pathology.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 6 that include full lists of differentially expressed genes resulting from RNA-seq analysis of Achilles and patellar tendons from 1- month wild-type and Crtap-/- mice. For each, a list of predicted upstream regulators identified using Ingenuity Pathway Analysis is also included.

Article and author information

Author details

  1. Matthew William Grol

    Physiology and Pharmacology, University of Western Ontario, London, Canada
    For correspondence
    mgrol2@uwo.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6514-9066
  2. Nele A Haelterman

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joohyun Lim

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9670-806X
  4. Elda M Munivez

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marilyn Archer

    Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. David M Hudson

    Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Sara F Tufa

    Shriners Hospital for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Douglas R Keene

    Shriners Hospital for Children, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kevin Lei

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Dongsu Park

    Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Cole D Kuzawa

    Orthopaedic Surgery, The University of Texas Health Sciences Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Catherine G Ambrose

    Orthopaedic Surgery, The University of Texas Health Sciences Center at Houston, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. David R Eyre

    Orthopaedics and Sports Medicine, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Brendan H Lee

    Baylor College of Medicine, Houston, United States
    For correspondence
    blee@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8573-4211

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (HD024064)

  • Brendan H Lee

Rolanette and Berdon Lawrence Bone Disease Program of Texas

  • Brendan H Lee

BCM Center for Skeletal Medicine and Biology

  • Brendan H Lee

Pamela and David Ott Center for Heritable Disorders of Connective Tissue

  • Brendan H Lee

National Institute of Arthritis and Musculoskeletal and Skin Diseases (AR373318)

  • David R Eyre

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Institutional Animal Care and Use Committee (IACUC) protocols (#AN-1506) at Baylor College of Medicine.

Copyright

© 2021, Grol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,311
    views
  • 168
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew William Grol
  2. Nele A Haelterman
  3. Joohyun Lim
  4. Elda M Munivez
  5. Marilyn Archer
  6. David M Hudson
  7. Sara F Tufa
  8. Douglas R Keene
  9. Kevin Lei
  10. Dongsu Park
  11. Cole D Kuzawa
  12. Catherine G Ambrose
  13. David R Eyre
  14. Brendan H Lee
(2021)
Tendon and motor phenotypes in the Crtap-/- mouse model of recessive Osteogenesis Imperfecta
eLife 10:e63488.
https://doi.org/10.7554/eLife.63488

Share this article

https://doi.org/10.7554/eLife.63488

Further reading

    1. Genetics and Genomics
    Sophie Debaenst, Tamara Jarayseh ... Andy Willaert
    Research Article

    Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes. Six genes linked to severe recessive osteogenesis imperfecta (OI) and four associated with bone mineral density (BMD) from genome-wide association studies were analyzed using CRISPR/Cas9-based crispant screening in F0 mosaic founder zebrafish. Next-generation sequencing confirmed high indel efficiency (mean 88%), mimicking stable knock-out models. Skeletal phenotyping at 7, 14, and 90 days post-fertilization (dpf) using microscopy, Alizarin Red S staining, and microCT was performed. Larval crispants showed variable osteoblast and mineralization phenotypes, while adult crispants displayed consistent skeletal defects, including malformed neural and haemal arches, vertebral fractures and fusions, and altered bone volume and density. In addition, aldh7a1 and mbtps2 crispants experienced increased mortality due to severe skeletal deformities. RT-qPCR revealed differential expression of osteogenic markers bglap and col1a1a, highlighting their biomarker potential. Our results establish zebrafish crispant screening as a robust tool for FBD gene validation, combining skeletal and molecular analyses across developmental stages to uncover novel insights into gene functions in bone biology.

    1. Genetics and Genomics
    Khanh B Trang, Matthew C Pahl ... Struan FA Grant
    Research Article

    The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci, we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18, and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 – an inflammation-responsive gene in nerve nociceptors – was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.