Context-dependent relationships between locus coeruleus firing patterns and coordinated neural activity in the anterior cingulate cortex

  1. Siddhartha Joshi  Is a corresponding author
  2. Joshua I Gold
  1. Baylor College of Medicine, United States
  2. University of Pennsylvania, United States

Abstract

Ascending neuromodulatory projections from the locus coeruleus (LC) affect cortical neural networks via the release of norepinephrine (NE). However, the exact nature of these neuromodulatory effects on neural activity patterns in vivo is not well understood. Here we show that in awake monkeys, LC activation is associated with changes in coordinated activity patterns in the anterior cingulate cortex (ACC). These relationships, which are largely independent of changes in firing rates of individual ACC neurons, depend on the type of LC activation: ACC pairwise correlations tend to be reduced when ongoing (baseline) LC activity increases but enhanced when external events evoke transient LC responses. Both relationships covary with pupil changes that reflect LC activation and arousal. These results suggest that modulations of information processing that reflect changes in coordinated activity patterns in cortical networks can result partly from ongoing, context-dependent, arousal-related changes in activation of the LC-NE system.

Data availability

Data and Matlab code for all figures in this manuscript are available at:https://github.com/TheGoldLab/LC_ACC_paper_Joshi_Gold_2021.git

Article and author information

Author details

  1. Siddhartha Joshi

    Department of Neuroscience, Baylor College of Medicine, Houston, United States
    For correspondence
    thesidjoshi@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0529-9430
  2. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Joshua I Gold, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6018-0483

Funding

National Institutes of Health (R21 MH107001)

  • Joshua I Gold

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal training, surgery and experimental procedures were performed in accordance withthe NIH's Guide for the Care and Use of Laboratory Animals and were approved by the Universityof Pennsylvania Institutional Animal Care and Use Committee (protocol 806027).

Reviewing Editor

  1. Erin L Rich, Icahn School of Medicine at Mount Sinai, United States

Publication history

  1. Received: September 25, 2020
  2. Preprint posted: September 28, 2020 (view preprint)
  3. Accepted: December 16, 2021
  4. Accepted Manuscript published: January 7, 2022 (version 1)
  5. Version of Record published: January 18, 2022 (version 2)

Copyright

© 2022, Joshi & Gold

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,064
    Page views
  • 183
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Siddhartha Joshi
  2. Joshua I Gold
(2022)
Context-dependent relationships between locus coeruleus firing patterns and coordinated neural activity in the anterior cingulate cortex
eLife 11:e63490.
https://doi.org/10.7554/eLife.63490

Further reading

    1. Neuroscience
    Nataliia Kozhemiako et al.
    Research Article

    Motivated by the potential of objective neurophysiological markers to index thalamocortical function in patients with severe psychiatric illnesses, we comprehensively characterized key non-rapid eye movement (NREM) sleep parameters across multiple domains, their interdependencies, and their relationship to waking event-related potentials and symptom severity. In 72 schizophrenia (SCZ) patients and 58 controls, we confirmed a marked reduction in sleep spindle density in SCZ and extended these findings to show that fast and slow spindle properties were largely uncorrelated. We also describe a novel measure of slow oscillation and spindle interaction that was attenuated in SCZ. The main sleep findings were replicated in a demographically distinct sample, and a joint model, based on multiple NREM components, statistically predicted disease status in the replication cohort. Although also altered in patients, auditory event-related potentials elicited during wake were unrelated to NREM metrics. Consistent with a growing literature implicating thalamocortical dysfunction in SCZ, our characterization identifies independent NREM and wake EEG biomarkers that may index distinct aspects of SCZ pathophysiology and point to multiple neural mechanisms underlying disease heterogeneity. This study lays the groundwork for evaluating these neurophysiological markers, individually or in combination, to guide efforts at treatment and prevention as well as identifying individuals most likely to benefit from specific interventions.

    1. Medicine
    2. Neuroscience
    Guido I Guberman et al.
    Research Article

    Background: The heterogeneity of white matter damage and symptoms in concussion has been identified as a major obstacle to therapeutic innovation. In contrast, most diffusion MRI (dMRI) studies on concussion have traditionally relied on group-comparison approaches that average out heterogeneity. To leverage, rather than average out, concussion heterogeneity, we combined dMRI and multivariate statistics to characterize multi-tract multi-symptom relationships.

    Methods: Using cross-sectional data from 306 previously-concussed children aged 9-10 from the Adolescent Brain Cognitive Development Study, we built connectomes weighted by classical and emerging diffusion measures. These measures were combined into two informative indices, the first representing microstructural complexity, the second representing axonal density. We deployed pattern-learning algorithms to jointly decompose these connectivity features and 19 symptom measures.

    Results: Early multi-tract multi-symptom pairs explained the most covariance and represented broad symptom categories, such as a general problems pair, or a pair representing all cognitive symptoms, and implicated more distributed networks of white matter tracts. Further pairs represented more specific symptom combinations, such as a pair representing attention problems exclusively, and were associated with more localized white matter abnormalities. Symptom representation was not systematically related to tract representation across pairs. Sleep problems were implicated across most pairs, but were related to different connections across these pairs. Expression of multi-tract features was not driven by sociodemographic and injury-related variables, as well as by clinical subgroups defined by the presence of ADHD. Analyses performed on a replication dataset showed consistent results.

    Conclusions: Using a double-multivariate approach, we identified clinically-informative, cross-demographic multi-tract multi-symptom relationships. These results suggest that rather than clear one-to-one symptom-connectivity disturbances, concussions may be characterized by subtypes of symptom/connectivity relationships. The symptom/connectivity relationships identified in multi-tract multi-symptom pairs were not apparent in single-tract/single-symptom analyses. Future studies aiming to better understand connectivity/symptom relationships should take into account multi-tract multi-symptom heterogeneity.

    Funding: financial support for this work from a Vanier Canada Graduate Scholarship from the Canadian Institutes of Health Research (GIG), an Ontario Graduate Scholarship (SS), a Restracomp Research Fellowship provided by the Hospital for Sick Children (SS), an Institutional Research Chair in Neuroinformatics (MD), as well as a Natural Sciences and Engineering Research Council CREATE grant (MD).